Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Sci Adv ; 9(2): eadd8417, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36630507

RESUMO

Amphetamine (AMPH) is a psychostimulant that is commonly abused. The stimulant properties of AMPH are associated with its ability to increase dopamine (DA) neurotransmission. This increase is promoted by nonvesicular DA release mediated by reversal of DA transporter (DAT) function. Syntaxin 1 (Stx1) is a SNARE protein that is phosphorylated at Ser14 by casein kinase II. We show that Stx1 phosphorylation is critical for AMPH-induced nonvesicular DA release and, in Drosophila melanogaster, regulates the expression of AMPH-induced preference and sexual motivation. Our molecular dynamics simulations of the DAT/Stx1 complex demonstrate that phosphorylation of these proteins is pivotal for DAT to dwell in a DA releasing state. This state is characterized by the breakdown of two key salt bridges within the DAT intracellular gate, causing the opening and hydration of the DAT intracellular vestibule, allowing DA to bind from the cytosol, a mechanism that we hypothesize underlies nonvesicular DA release.


Assuntos
Dopamina , Sintaxina 1 , Animais , Anfetamina/farmacologia , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Drosophila melanogaster/metabolismo , Fosforilação , Sintaxina 1/genética , Sintaxina 1/metabolismo
2.
JCI Insight ; 6(18)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34375312

RESUMO

Dysfunctional dopaminergic neurotransmission is central to movement disorders and mental diseases. The dopamine transporter (DAT) regulates extracellular dopamine levels, but the genetic and mechanistic link between DAT function and dopamine-related pathologies is not clear. Particularly, the pathophysiological significance of monoallelic missense mutations in DAT is unknown. Here, we use clinical information, neuroimaging, and large-scale exome-sequencing data to uncover the occurrence and phenotypic spectrum of a DAT coding variant, DAT-K619N, which localizes to the critical C-terminal PSD-95/Discs-large/ZO-1 homology-binding motif of human DAT (hDAT). We identified the rare but recurrent hDAT-K619N variant in exome-sequenced samples of patients with neuropsychiatric diseases and a patient with early-onset neurodegenerative parkinsonism and comorbid neuropsychiatric disease. In cell cultures, hDAT-K619N displayed reduced uptake capacity, decreased surface expression, and accelerated turnover. Unilateral expression in mouse nigrostriatal neurons revealed differential effects of hDAT-K619N and hDAT-WT on dopamine-directed behaviors, and hDAT-K619N expression in Drosophila led to impairments in dopamine transmission with accompanying hyperlocomotion and age-dependent disturbances of the negative geotactic response. Moreover, cellular studies and viral expression of hDAT-K619N in mice demonstrated a dominant-negative effect of the hDAT-K619N mutant. Summarized, our results suggest that hDAT-K619N can effectuate dopamine dysfunction of pathological relevance in a dominant-negative manner.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Transtornos Mentais/genética , Neurônios/metabolismo , Transtornos Parkinsonianos/genética , Adulto , Animais , Comportamento Animal , Transporte Biológico , Células Cultivadas , Bases de Dados Genéticas , Drosophila , Exoma , Feminino , Humanos , Hipocinesia/diagnóstico por imagem , Hipocinesia/genética , Hipocinesia/metabolismo , Masculino , Transtornos Mentais/metabolismo , Mesencéfalo/metabolismo , Camundongos , Pessoa de Meia-Idade , Atividade Motora/genética , Mutação , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/metabolismo , Fenótipo , Transmissão Sináptica , Tomografia Computadorizada de Emissão de Fóton Único , Transfecção
3.
Mol Psychiatry ; 26(8): 4417-4430, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31796894

RESUMO

Reward modulates the saliency of a specific drug exposure and is essential for the transition to addiction. Numerous human PET-fMRI studies establish a link between midbrain dopamine (DA) release, DA transporter (DAT) availability, and reward responses. However, how and whether DAT function and regulation directly participate in reward processes remains elusive. Here, we developed a novel experimental paradigm in Drosophila melanogaster to study the mechanisms underlying the psychomotor and rewarding properties of amphetamine (AMPH). AMPH principally mediates its pharmacological and behavioral effects by increasing DA availability through the reversal of DAT function (DA efflux). We have previously shown that the phospholipid, phosphatidylinositol (4, 5)-bisphosphate (PIP2), directly interacts with the DAT N-terminus to support DA efflux in response to AMPH. In this study, we demonstrate that the interaction of PIP2 with the DAT N-terminus is critical for AMPH-induced DAT phosphorylation, a process required for DA efflux. We showed that PIP2 also interacts with intracellular loop 4 at R443. Further, we identified that R443 electrostatically regulates DA efflux as part of a coordinated interaction with the phosphorylated N-terminus. In Drosophila, we determined that a neutralizing substitution at R443 inhibited the psychomotor actions of AMPH. We associated this inhibition with a decrease in AMPH-induced DA efflux in isolated fly brains. Notably, we showed that the electrostatic interactions of R443 specifically regulate the rewarding properties of AMPH without affecting AMPH aversion. We present the first evidence linking PIP2, DAT, DA efflux, and phosphorylation processes with AMPH reward.


Assuntos
Anfetamina , Proteínas da Membrana Plasmática de Transporte de Dopamina , Anfetamina/farmacologia , Animais , Sítios de Ligação , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Drosophila melanogaster , Fosfatidilinositóis
4.
Proc Natl Acad Sci U S A ; 116(9): 3853-3862, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30755521

RESUMO

The human dopamine (DA) transporter (hDAT) mediates clearance of DA. Genetic variants in hDAT have been associated with DA dysfunction, a complication associated with several brain disorders, including autism spectrum disorder (ASD). Here, we investigated the structural and behavioral bases of an ASD-associated in-frame deletion in hDAT at N336 (∆N336). We uncovered that the deletion promoted a previously unobserved conformation of the intracellular gate of the transporter, likely representing the rate-limiting step of the transport process. It is defined by a "half-open and inward-facing" state (HOIF) of the intracellular gate that is stabilized by a network of interactions conserved phylogenetically, as we demonstrated in hDAT by Rosetta molecular modeling and fine-grained simulations, as well as in its bacterial homolog leucine transporter by electron paramagnetic resonance analysis and X-ray crystallography. The stabilization of the HOIF state is associated both with DA dysfunctions demonstrated in isolated brains of Drosophila melanogaster expressing hDAT ∆N336 and with abnormal behaviors observed at high-time resolution. These flies display increased fear, impaired social interactions, and locomotion traits we associate with DA dysfunction and the HOIF state. Together, our results describe how a genetic variation causes DA dysfunction and abnormal behaviors by stabilizing a HOIF state of the transporter.


Assuntos
Transtorno do Espectro Autista/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Dopamina/genética , Locomoção/genética , Animais , Animais Geneticamente Modificados , Transtorno do Espectro Autista/fisiopatologia , Cristalografia por Raios X , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Espectroscopia de Ressonância de Spin Eletrônica , Medo/fisiologia , Humanos , Relações Interpessoais , Locomoção/fisiologia , Modelos Moleculares , Mutação , Deleção de Sequência/genética
5.
J Chem Neuroanat ; 83-84: 69-74, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28163218

RESUMO

Synthetic cathinones are similar in chemical structure to amphetamines, and their behavioral effects are associated with enhanced dopaminergic signaling. The past ten years of research on the common constituent of bath salts, MDPV (the synthetic cathinone 3,4-methylenedioxypyrovalerone), has aided the understanding of how synthetic cathinones act at the dopamine (DA) transporter (DAT). Several groups have described the ability of MDPV to block the DAT with high-affinity. In this study, we demonstrate for the first time a new mode of action of MDPV, namely its ability to promote DAT-mediated DA efflux. Using single cell amperometric assays, we determined that low concentrations of MDPV (1nM) can cause reverse transport of DA via DAT. Notably, administration of MDPV leads to hyperlocomotion in Drosophila melanogaster. These data describe further how MDPV acts at the DAT, possibly paving the way for novel treatment strategies for individuals who abuse bath salts.


Assuntos
Benzodioxóis/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Dopamina/metabolismo , Psicotrópicos/farmacologia , Pirrolidinas/farmacologia , Animais , Drosophila melanogaster , Humanos , Catinona Sintética
6.
Mol Autism ; 6: 8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25741436

RESUMO

Our laboratory recently characterized a novel autism spectrum disorder (ASD)-associated de novo missense mutation in the human dopamine transporter (hDAT) gene SLC6A3 (hDAT T356M). This hDAT variant exhibits dysfunctional forward and reverse transport properties that may contribute to DA dysfunction in ASD. Here, we report that Zn(2+) reverses, at least in part, the functional deficits of ASD-associated hDAT variant T356M. These data suggest that the molecular mechanism targeted by Zn(2+) to restore partial function in hDAT T356M may be a novel therapeutic target to rescue functional deficits in hDAT variants associated with ASD.

7.
EBioMedicine ; 2(2): 135-146, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25774383

RESUMO

BACKGROUND: Syntaxin 1 (STX1) is a presynaptic plasma membrane protein that coordinates synaptic vesicle fusion. STX1 also regulates the function of neurotransmitter transporters, including the dopamine (DA) transporter (DAT). The DAT is a membrane protein that controls DA homeostasis through the high-affinity re-uptake of synaptically released DA. METHODS: We adopt newly developed animal models and state-of-the-art biophysical techniques to determine the contribution of the identified gene variants to impairments in DA neurotransmission observed in autism spectrum disorder (ASD). OUTCOMES: Here, we characterize two independent autism-associated variants in the genes that encode STX1 and the DAT. We demonstrate that each variant dramatically alters DAT function. We identify molecular mechanisms that converge to inhibit reverse transport of DA and DA-associated behaviors. These mechanisms involve decreased phosphorylation of STX1 at Ser14 mediated by casein kinase 2 as well as a reduction in STX1/DAT interaction. These findings point to STX1/DAT interactions and STX1 phosphorylation as key regulators of DA homeostasis. INTERPRETATION: We determine the molecular identity and the impact of these variants with the intent of defining DA dysfunction and associated behaviors as possible complications of ASD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA