Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicology ; 31(3): 425-439, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35089487

RESUMO

Zinc oxide nanoparticles (ZnO NPs) and multi-layer graphenes (MLGs) are widely used, and due to the lack of appropriate wastewater treatment may end up in the aquatic environment, with unknown consequences to biota. The main purpose of this study was to assess the acute toxicity, histopathological and behavioural changes caused by the exposure of ZnO NPs and MLGs, alone and combined, to the blackfish Capoeta fusca. The estimated mean 96 h-LC50 for ZnO NPs was 4.9 mg L-1 and 68.4 mg L-1 for MLGs. In combination, MLGs increased the acute toxicity of the ZnO NPs. The effects of the different NPs on the gills included hyperplasia, aneurisms, and fusion of the lamellae. In the intestine, exposure to the NPs resulted in an increase in the number and swelling of goblet cells and tissue degeneration. Loss of balance, restlessness, erratic and abnormal swimming patterns were the most common behavioural changes seen in the ZnO NPs' exposed blackfish. In contrast with the acute toxicity findings, MLGs decreased the histopathological and behavioural effects of the ZnO NPs on both gills and intestinal tissues as well as fish behaviour. Our experimental results illustrated insights into the simultaneous exposure assessment of metal-based NPs and carbon nanomaterials, although further research is needed on the interactions exposure of these substances to interpreting the toxicological effects of metal-based nanomaterials seen in exposed organisms.


Assuntos
Cyprinidae , Grafite , Nanopartículas Metálicas , Nanopartículas , Poluentes Químicos da Água , Óxido de Zinco , Animais , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade , Óxido de Zinco/toxicidade
2.
Environ Sci Pollut Res Int ; 28(12): 15236-15247, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33236301

RESUMO

In this study, for the first time, a TiO2/graphene (G) heterostructure was synthesized and doped by Bi and SnO2 nanoparticles through a hydrothermal treatment. The as-synthesized nanocomposite was employed for photocatalytic degradation of pentachlorophenol (PCP) under visible light irradiation. Structural characterizations such as X-ray photoelectron spectroscopy (XPS) and X-ray diffraction spectroscopy (XRD) proved the valence band alignment at Bi/SnO2/TiO2-G interfaces and crystallinity of the nanocomposite, respectively. The as-developed nanocomposite photocatalyst was able to decompose 84% PCP, thanks to the generation of a large number of active OH•- and O2•- radicals. To achieve this optimum photodegradation efficiency, various parameters such as pH, catalyst dosage, and PCP concentration were optimized. The results showed that the PCP photodegradation process followed the first-order kinetic model and the reaction rate constant rose from 0.007 min-1 (Bi) to 0.0149 min-1 (Bi/SnO2/TiO2-G). The PCP photodegradation efficiency did not decrease significantly after 5 cycles, and the nanocomposite photocatalyst still showed a high efficiency of 68% in the last cycle. The excellent photocatalytic activity of Bi/SnO2/TiO2-G is ascribed as well as the heterostructure of the nanocomposite photocatalyst.


Assuntos
Grafite , Nanocompostos , Pentaclorofenol , Catálise , Luz , Fotólise , Titânio
3.
Chemosphere ; 269: 128689, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33127112

RESUMO

In this study, we investigated the bioaccumulation and toxicokinetics of zinc oxide nanoparticles (ZnO NPs) alone and in the presence of graphene nanosheets (GNs) in the blackfish (Capoeta fusca). Blackfish were exposed via water to two ZnO NPs concentrations alone or as a combination with GNs and uptake of Zn into the gills, intestine, liver, and kidney was assessed at 7, 14 and 28 d. Zn elimination from these tissues was then assessed after a further 7, 14 and 28 d in clean water for both ZnO NPs concentrations and combined ZnO NPs/GN exposures. In the body tissues analyzed of exposed fish, the highest amounts of Zn occurred in the intestine and the lowest amount in the liver. Zn levels in blackfish after 28 d of exposure were higher in all treatment groups compared to those on 7 d (p < 0.05). For both ZnO NPs exposure concentrations, the highest amount of Zn was eliminated from the intestine, followed by the gills. Furthermore, elimination kinetics for both ZnO NPs concentrations alone and in combination with GNs showed that the shortest half-life for Zn is occurring in the intestine. Moreover, uptake rates of Zn in fish exposed to ZnO NPs + GNs followed the same pattern observed for the ZnO NP, with intestine and gills having the highest levels followed by kidney and liver. Thus, we show accumulation and elimination of Zn from ZnO NPs in blackfish depends on the tissue, exposure concentration and duration, and is dependent on the presence of GNs.


Assuntos
Grafite , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Animais , Bioacumulação , Grafite/toxicidade , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Toxicocinética , Óxido de Zinco/toxicidade
4.
Chemosphere ; 247: 125900, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31951957

RESUMO

We assessed the toxicity of iron oxide nanoparticles compared with iron salts in the blackfish (Capoeta fusca). After an acute toxicity assessment, we conducted a chronic exposure to a sub-lethal concentration of Fe3O4 NPs, and iron salts (ferric nitrate (Fe(NO3)3), ferric chloride (FeCl3), ferrous sulfate (FeSO4)) to measure iron uptake over a period of 28 days and then subsequent clearance of the iron uptake in the exposed fish that were transferred to clean water for 28 days. Fe(NO3)3 was the most acutely toxic compound followed by FeCl3, FeSO4, and Fe3O4 NPs. Exposure to Fe3O4 NPs and iron salts induced histopathology anomalies in both gills and intestine that included aneurism, hyperplasia, oedema, fusion of lamellae, lamellar synechiae, and clear signs of necrosis (in the gills) and increases in the number of goblet cells, blood cell counts, and higher numbers of lymphocyte (in the intestine). Fe3O4 NPs showed a higher level of uptake in the body tissues compared with iron salts (p < 0.05) with levels of Fe in the gill > intestine > liver > kidney. Fe was shown to be eliminated most efficiently from the gills, followed by the kidney, then liver and finally the intestine. The highest tissue bioconcentration factors (BCF) occurred in the liver for FeCl3, Fe3O4 NPs, and FeSO4 and in the gills for Fe(NO3)3. We thus show differences in the patterns of tissue accumulation, clearance and toxicological responses for exposures to Fe3O4 NPs and iron salts in blackfish with implications for different susceptibilities for biological effects.


Assuntos
Cyprinidae/fisiologia , Compostos Férricos/toxicidade , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Bioacumulação , Cloretos , Compostos Férricos/metabolismo , Brânquias/efeitos dos fármacos , Ferro/metabolismo , Fígado/metabolismo , Nanopartículas/metabolismo , Nitratos , Sais/metabolismo , Sais/toxicidade , Testes de Toxicidade Aguda , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA