Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Mol Phylogenet Evol ; 197: 108111, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38801965

RESUMO

Swallows (Hirundinidae) are a globally distributed family of passerine birds that exhibit remarkable similarity in body shape but tremendous variation in plumage, sociality, nesting behavior, and migratory strategies. As a result, swallow species have become models for empirical behavioral ecology and evolutionary studies, and variation across the Hirundinidae presents an excellent opportunity for comparative analyses of trait evolution. Exploiting this potential requires a comprehensive and well-resolved phylogenetic tree of the family. To address this need, we estimated swallow phylogeny using genetic data from thousands of ultraconserved element (UCE) loci sampled from nearly all recognized swallow species. Maximum likelihood, coalescent-based, and Bayesian approaches yielded a well-resolved phylogenetic tree to the generic level, with minor disagreement among inferences at the species level, which likely reflect ongoing population genetic processes. The UCE data were particularly useful in helping to resolve deep nodes, which previously confounded phylogenetic reconstruction efforts. Divergence time estimates from the improved swallow tree support a Miocene origin of the family, roughly 13 million years ago, with subsequent diversification of major groups in the late Miocene and Pliocene. Our estimates of historical biogeography support the hypothesis that swallows originated in the Afrotropics and have subsequently expanded across the globe, with major in situ diversification in Africa and a secondary major radiation following colonization of the Neotropics. Initial examination of nesting and sociality indicates that the origin of mud nesting - a relatively rare nest construction phenotype in birds - was a major innovation coincident with the origin of a clade giving rise to over 40% of extant swallow diversity. In contrast, transitions between social and solitary nesting appear less important for explaining patterns of diversification among swallows.

2.
Mol Ecol ; 30(19): 4757-4770, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34297854

RESUMO

Intraspecific polymorphism in birds, especially plumage colour polymorphism, and the mechanisms that control it are an area of active research in evolutionary biology. The black-headed bulbul (Brachypodius atriceps) is a polymorphic species with two distinct morphs, yellow and grey. This species inhabits the mainland and virtually all continental islands of Southeast Asia where yellow morphs predominate, but on two islands in the Sunda region, Bawean and Maratua, grey morphs are common or exclusive. Here, we generated a high-quality reference genome of a yellow individual and resequenced genomes of multiple individuals of both yellow and grey morphs to study the genetic basis of coloration and population history of the species. Using PCA and STRUCTURE analysis, we found the Maratua Island population (which is exclusively grey) to be distinct from all other B. atriceps populations, having been isolated c. 1.9 million years ago (Ma). In contrast, Bawean grey individuals (a subset of yellow and grey individuals on that island) are embedded within an almost panmictic Sundaic clade of yellow birds. Using FST and dxy to compare variable genomic segments between Maratua and yellow individuals, we located peaks of divergence and identified candidate loci involved in the colour polymorphism. Tests of selection among coding-proteins in high FST regions, however, did not indicate selection on the candidate genes. Overall, we report on some loci that are potentially responsible for the grey/yellow polymorphism in a species that otherwise shows little genetic diversification across most of its range.


Assuntos
Genoma , Genômica , Evolução Biológica , Cor , Humanos , Filogeografia
3.
Science ; 370(6522): 1343-1348, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33303617

RESUMO

The tropics are the source of most biodiversity yet inadequate sampling obscures answers to fundamental questions about how this diversity evolves. We leveraged samples assembled over decades of fieldwork to study diversification of the largest tropical bird radiation, the suboscine passerines. Our phylogeny, estimated using data from 2389 genomic regions in 1940 individuals of 1283 species, reveals that peak suboscine species diversity in the Neotropics is not associated with high recent speciation rates but rather with the gradual accumulation of species over time. Paradoxically, the highest speciation rates are in lineages from regions with low species diversity, which are generally cold, dry, unstable environments. Our results reveal a model in which species are forming faster in environmental extremes but have accumulated in moderate environments to form tropical biodiversity hotspots.


Assuntos
Biodiversidade , Aves/classificação , Aves/genética , Animais , Especiação Genética , Filogenia
4.
Ecol Evol ; 10(7): 3222-3247, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32273983

RESUMO

Indochina and Sundaland are biologically diverse, interconnected regions of Southeast Asia with complex geographic histories. Few studies have examined phylogeography of bird species that span the two regions because of inadequate population sampling. To determine how geographic barriers/events and disparate dispersal potential have influenced the population structure, gene flow, and demographics of species that occupy the entire area, we studied five largely codistributed rainforest bird species: Arachnothera longirostra, Irena puella, Brachypodius atriceps, Niltava grandis, and Stachyris nigriceps. We accomplished relatively thorough sampling and data collection by sequencing ultraconserved elements (UCEs) using DNA extracted from modern and older (historical) specimens. We obtained a genome-wide set of 753-4,501 variable loci and 3,919-18,472 single nucleotide polymorphisms. The formation of major within-species lineages occurred within a similar span of time (0.5-1.5 mya). Major patterns in population genetic structure are largely consistent with the dispersal potential and habitat requirements of the study species. A population break across the Isthmus of Kra was shared only by the two hill/submontane insectivores (N. grandis and S. nigriceps). Across Sundaland, there is little structure in B. atriceps, which is a eurytopic and partially frugivorous species that often utilizes forest edges. Two other eurytopic species, A. longirostra and I. puella, possess highly divergent populations in peripheral Sunda Islands (Java and/or Palawan) and India. These species probably possess intermediate dispersal abilities that allowed them to colonize new areas, and then remained largely isolated subsequently. We also observed an east-west break in Indochina that was shared by B. atriceps and S. nigriceps, species with very different habitat requirements and dispersal potential. By analyzing high-throughput DNA data, our study provides an unprecedented comparative perspective on the process of avian population divergence across Southeast Asia, a process that is determined by geography, species characteristics, and the stochastic nature of dispersal and vicariance events.

5.
Proc Natl Acad Sci U S A ; 116(16): 7916-7925, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30936315

RESUMO

Avian diversification has been influenced by global climate change, plate tectonic movements, and mass extinction events. However, the impact of these factors on the diversification of the hyperdiverse perching birds (passerines) is unclear because family level relationships are unresolved and the timing of splitting events among lineages is uncertain. We analyzed DNA data from 4,060 nuclear loci and 137 passerine families using concatenation and coalescent approaches to infer a comprehensive phylogenetic hypothesis that clarifies relationships among all passerine families. Then, we calibrated this phylogeny using 13 fossils to examine the effects of different events in Earth history on the timing and rate of passerine diversification. Our analyses reconcile passerine diversification with the fossil and geological records; suggest that passerines originated on the Australian landmass ∼47 Ma; and show that subsequent dispersal and diversification of passerines was affected by a number of climatological and geological events, such as Oligocene glaciation and inundation of the New Zealand landmass. Although passerine diversification rates fluctuated throughout the Cenozoic, we find no link between the rate of passerine diversification and Cenozoic global temperature, and our analyses show that the increases in passerine diversification rate we observe are disconnected from the colonization of new continents. Taken together, these results suggest more complex mechanisms than temperature change or ecological opportunity have controlled macroscale patterns of passerine speciation.


Assuntos
Passeriformes , Animais , Austrália , Biodiversidade , Evolução Biológica , Fósseis , Nova Zelândia , Passeriformes/classificação , Passeriformes/genética , Passeriformes/fisiologia , Filogenia
6.
Mol Phylogenet Evol ; 120: 151-157, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29242166

RESUMO

Reduced representation genomic sequencing methods efficiently gather sequence data from thousands of loci throughout the genome. These data can be used to test previous phylogenetic hypotheses produced from limited numbers of mitochondrial and nuclear loci that often reveal intriguing, but conflicting, results. In this paper, we use phylogenomic data to revisit recent molecular phylogenetic work that clarified many taxonomic relationships within spiderhunters, but also questioned the monophyly of this distinctive genus of sunbirds (AVES: Nectariniidae; Arachnothera). DNA sequence data were produced by target-capture sequencing of ultraconserved elements (UCEs) to infer the evolutionary history of 11 species of Arachnothera and six outgroups, including the Purple-naped Sunbird (Hypogramma hypogrammicum), which previous work suggested might lie within Arachnothera. Although we recovered many different gene tree topologies, concatenated and coalescent methods of analysis converged on a species tree that strongly supports the monophyly of Arachnothera, with Hypogramma as its sister taxon.


Assuntos
Genoma , Passeriformes/classificação , Animais , Evolução Biológica , Biologia Computacional , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Loci Gênicos , Funções Verossimilhança , Passeriformes/genética , Filogenia , Análise de Sequência de DNA
7.
Mol Phylogenet Evol ; 116: 182-191, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28890006

RESUMO

Molecular phylogenetic studies of woodpeckers (Picidae) have generally focused on relationships within specific clades or have sampled sparsely across the family. We compared DNA sequences of six loci from 203 of the 217 recognized species of woodpeckers to construct a comprehensive tree of intrafamilial relationships. We recovered many known, but also numerous unknown, relationships among clades and species. We found, for example, that the three picine tribes are related as follows (Picini, (Campephilini, Melanerpini)) and that the genus Dinopium is paraphyletic. We used the tree to analyze rates of diversification and biogeographic patterns within the family. Diversification rate increased on two occasions during woodpecker history. We also tested diversification rates between temperate and tropical species but found no significant difference. Biogeographic analysis supported an Old World origin of the family and identified at least six independent cases of New World-Old World sister relationships. In light of the tree, we discuss how convergence, mimicry, and potential cases of hybridization have complicated woodpecker taxonomy.


Assuntos
Evolução Biológica , Aves/genética , Árvores , Animais , Teorema de Bayes , Calibragem , DNA Mitocondrial/genética , Filogenia
8.
Mol Phylogenet Evol ; 113: 139-149, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28545973

RESUMO

The mountains of Borneo are well known for their high endemicity and historical role in preserving Southeast Asian rainforest biodiversity, but the diversification of populations inhabiting these mountains is poorly studied. Here we examine the genetic structure of 12 Bornean montane passerines by comparing complete mtDNA ND2 gene sequences of populations spanning the island. Maximum likelihood and Bayesian phylogenetic trees and haplotype networks are examined for common patterns that might signal important historical events or boundaries to dispersal. Morphological and ecological characteristics of each species are also examined using phylogenetic generalized least-squares (PGLS) for correlation with population structure. Populations in only four of the 12 species are subdivided into distinct clades or haplotype groups. Although this subdivision occurred at about the same time in each species (ca. 0.6-0.7Ma), the spatial positioning of the genetic break differs among the species. In two species, northeastern populations are genetically divergent from populations elsewhere on the island. In the other two species, populations in the main Bornean mountain chain, including the northeast, are distinct from those on two isolated peaks in northwestern Borneo. We suggest different historical forces played a role in shaping these two distributions, despite commonality in timing. PGLS analysis showed that only a single characteristic-hand-wing index-is correlated with population structure. Birds with longer wings, and hence potentially more dispersal power, have less population structure. To understand historical forces influencing montane population structure on Borneo, future studies must compare populations across the entirety of Sundaland.


Assuntos
Biodiversidade , Evolução Biológica , Ecologia , Passeriformes/fisiologia , Animais , Teorema de Bayes , Bornéu , Haplótipos/genética , Análise dos Mínimos Quadrados , Filogenia , Filogeografia , Especificidade da Espécie
9.
PeerJ ; 5: e3335, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28533979

RESUMO

Topographically complex regions often contain the close juxtaposition of closely related species along elevational gradients. The evolutionary causes of these elevational replacements, and thus the origin and maintenance of a large portion of species diversity along elevational gradients, are usually unclear because ecological differentiation along a gradient or secondary contact following allopatric diversification can produce the same pattern. We used reduced representation genomic sequencing to assess genetic relationships and gene flow between three parapatric pairs of closely related songbird taxa (Arachnothera spiderhunters, Chloropsis leafbirds, and Enicurus forktails) along an elevational gradient in Borneo. Each taxon pair presents a different elevational range distribution across the island, yet results were uniform: little or no gene flow was detected in any pairwise comparisons. These results are congruent with an allopatric "species-pump" model for generation of species diversity and elevational parapatry of congeners on Borneo, rather than in situ generation of species by "ecological speciation" along an elevational gradient.

10.
Syst Biol ; 66(5): 857-879, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369655

RESUMO

Phylogenomics, the use of large-scale data matrices in phylogenetic analyses, has been viewed as the ultimate solution to the problem of resolving difficult nodes in the tree of life. However, it has become clear that analyses of these large genomic data sets can also result in conflicting estimates of phylogeny. Here, we use the early divergences in Neoaves, the largest clade of extant birds, as a "model system" to understand the basis for incongruence among phylogenomic trees. We were motivated by the observation that trees from two recent avian phylogenomic studies exhibit conflicts. Those studies used different strategies: 1) collecting many characters [$\sim$ 42 mega base pairs (Mbp) of sequence data] from 48 birds, sometimes including only one taxon for each major clade; and 2) collecting fewer characters ($\sim$ 0.4 Mbp) from 198 birds, selected to subdivide long branches. However, the studies also used different data types: the taxon-poor data matrix comprised 68% non-coding sequences whereas coding exons dominated the taxon-rich data matrix. This difference raises the question of whether the primary reason for incongruence is the number of sites, the number of taxa, or the data type. To test among these alternative hypotheses we assembled a novel, large-scale data matrix comprising 90% non-coding sequences from 235 bird species. Although increased taxon sampling appeared to have a positive impact on phylogenetic analyses the most important variable was data type. Indeed, by analyzing different subsets of the taxa in our data matrix we found that increased taxon sampling actually resulted in increased congruence with the tree from the previous taxon-poor study (which had a majority of non-coding data) instead of the taxon-rich study (which largely used coding data). We suggest that the observed differences in the estimates of topology for these studies reflect data-type effects due to violations of the models used in phylogenetic analyses, some of which may be difficult to detect. If incongruence among trees estimated using phylogenomic methods largely reflects problems with model fit developing more "biologically-realistic" models is likely to be critical for efforts to reconstruct the tree of life. [Birds; coding exons; GTR model; model fit; Neoaves; non-coding DNA; phylogenomics; taxon sampling.].


Assuntos
Aves/classificação , Classificação/métodos , Conjuntos de Dados como Assunto , Filogenia , Animais , Genoma/genética , Genômica , Modelos Biológicos
11.
Curr Zool ; 62(4): 345-355, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29491923

RESUMO

Understanding foraging strategies of birds is essential to understanding mechanisms of their community assembly. To provide such information on a key Southeast Asian rainforest family, the babblers (Timaliidae), we evaluated foraging behavior and abundance in 7 morphologically and behaviorally similar sympatric species (Cyanoderma erythropterum, C. rufifrons, Stachyris maculata, S. nigricollis, S. poliocephala, Macronus ptilosus, and Mixornis gularis) in 5 habitats defined by structural complexity: (1) continuous native rainforest, (2) logged native rainforest fragments, (3) mature industrial tree plantation, (4) young industrial plantation, and (5) oil palm plantation. Enough data were obtained to compare abundance in all 7 species and foraging behavior in 5. All species were common in forest fragments and mature industrial tree plantations and less so in continuous rainforest and young industrial plantations; only M. gularis occurred in oil palm. In terms of foraging, M. gularis was the greatest generalist; C. rufifrons foraged mainly on live leaves in the forest midstory; and S. maculata, C. erythropterum, and M. ptilosus foraged mainly on dead leaves suspended in understory vegetation at significantly different heights. The dead-leaf substrate depends on a rich supply of falling leaves and extensive understory structure, conditions most common in native forest and old industrial plantations, and less so in mature forest, young plantations, and oil palm. Because of the importance of foraging data to understanding and managing biodiversity, we encourage the development of foraging fields in eBird (ebird.org), so that birdwatchers may help collect these relatively rare data.

12.
Science ; 346(6215): 1320-31, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25504713

RESUMO

To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.


Assuntos
Aves/genética , Genoma , Filogenia , Animais , Proteínas Aviárias/genética , Sequência de Bases , Evolução Biológica , Aves/classificação , Elementos de DNA Transponíveis , Genes , Especiação Genética , Mutação INDEL , Íntrons , Análise de Sequência de DNA
13.
Biology (Basel) ; 2(1): 419-44, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24832669

RESUMO

Insertion/deletion (indel) mutations, which are represented by gaps in multiple sequence alignments, have been used to examine phylogenetic hypotheses for some time. However, most analyses combine gap data with the nucleotide sequences in which they are embedded, probably because most phylogenetic datasets include few gap characters. Here, we report analyses of 12,030 gap characters from an alignment of avian nuclear genes using maximum parsimony (MP) and a simple maximum likelihood (ML) framework. Both trees were similar, and they exhibited almost all of the strongly supported relationships in the nucleotide tree, although neither gap tree supported many relationships that have proven difficult to recover in previous studies. Moreover, independent lines of evidence typically corroborated the nucleotide topology instead of the gap topology when they disagreed, although the number of conflicting nodes with high bootstrap support was limited. Filtering to remove short indels did not substantially reduce homoplasy or reduce conflict. Combined analyses of nucleotides and gaps resulted in the nucleotide topology, but with increased support, suggesting that gap data may prove most useful when analyzed in combination with nucleotide substitutions.

14.
Mol Phylogenet Evol ; 65(1): 317-22, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22750631

RESUMO

The New World swallow genus Tachycineta comprises nine species that collectively have a wide geographic distribution and remarkable variation both within- and among-species in ecologically important traits. Existing phylogenetic hypotheses for Tachycineta are based on mitochondrial DNA sequences, thus they provide estimates of a single gene tree. In this study we sequenced multiple individuals from each species at 16 nuclear intron loci. We used gene concatenated approaches (Bayesian and maximum likelihood) as well as coalescent-based species tree inference to reconstruct phylogenetic relationships of the genus. We examined the concordance and conflict between the nuclear and mitochondrial trees and between concatenated and coalescent-based inferences. Our results provide an alternative phylogenetic hypothesis to the existing mitochondrial DNA estimate of phylogeny. This new hypothesis provides a more accurate framework in which to explore trait evolution and examine the evolution of the mitochondrial genome in this group.


Assuntos
Genes Mitocondriais , Filogenia , Andorinhas/classificação , Animais , Teorema de Bayes , Evolução Biológica , DNA Mitocondrial/genética , Íntrons , Funções Verossimilhança , Modelos Genéticos , Análise de Sequência de DNA , Andorinhas/genética
15.
Mol Phylogenet Evol ; 65(2): 482-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22820021

RESUMO

Geographic variation in the Black-throated Laughingthrush (Garrulax chinensis) is examined to infer the influence of Pleistocene glacial oscillations on the genetic diversity of its subspecies. Mitochondrial evidence suggests that the endemic Hainan Island taxon, G. c. monachus, is monophyletic, whereas its closest continental relatives, G. c. chinensis and G. c. lochmius, are not. Multilocus coalescent analysis based on two mitochondrial and two nuclear intron loci indicates inter-subspecific genetic differentiation during the Pleistocene and substantial post-divergence genetic introgression from G. c. chinensis into G. c. lochmius. In contrast, G. c. monachus experienced no post-divergence gene flow despite occasional land-bridge contact with its continental relatives, suggesting its isolation may have been imposed by ecology as well as geography. It is probably reproductively isolated and should be treated as a distinct species.


Assuntos
Evolução Molecular , Variação Genética , Genética Populacional , Passeriformes/genética , Animais , China , DNA Mitocondrial/genética , Fluxo Gênico , Haplótipos , Ilhas , Isolamento Reprodutivo , Análise de Sequência de DNA
16.
Mol Phylogenet Evol ; 65(1): 54-63, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22687636

RESUMO

The lowland tailorbirds of Southeast Asia (Orthotomus) offer an excellent opportunity for comparative biogeography because of their diversity in the Greater Sunda and Philippine islands. We reconstructed the phylogeny of all species in the genus using maximum likelihood, Bayesian, and coalescent methods on DNA sequences of three gene segments: an autosomal intron (TGF), a Z-linked intron (MUSK), and a mitochondrial coding gene (ND2). Although resolution is low in parts of the phylogeny, several well defined clades emerge. When considered in light of distribution, these clades indicate that the Greater Sunda and Philippine islands were occupied early in Orthotomus history by the ancestors of O. sericeus in the Greater Sundas and O. frontalis in the Philippines. Subsequently, tailorbirds diversified further in each island group: O. atrogularis, O. ruficeps, and O. sepium arose in the Greater Sundas, and O. castaneiceps castaneiceps, O. c. chloronotus, O. derbianus, O. samarensis, O. nigriceps, and O. cinereiceps in the Philippines. Among the continental taxa (including Sundaic birds), the older lineages (O. sutorius and O. sericeus) are habitat generalists and the recently evolved taxa are more specialized. In the Philippines, several taxa once considered conspecific with O. atrogularis turn out to be highly divergent species (>9% in ND2). Indeed, all Philippine allospecies are well diverged from one another. This finding supports the recent assertion of higher-than-appreciated bird endemicity in the Philippines.


Assuntos
Passeriformes/classificação , Filogenia , Animais , Teorema de Bayes , Núcleo Celular/genética , DNA Mitocondrial/genética , Funções Verossimilhança , Passeriformes/genética , Filipinas , Análise de Sequência de DNA
17.
Mol Ecol ; 20(16): 3414-38, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21777318

RESUMO

Sundaland has a dynamic geographic history because its landmasses were periodically interconnected when sea levels fell during glacial periods. Superimposed on this geographic dynamism were environmental changes related to climatic oscillations. To investigate how tropical taxa responded to such changes, we studied the divergence and demographic history of two co-distributed rainforest passerine species, Arachnothera longirostra and Malacocincla malaccensis. We sampled birds primarily from Borneo and the Malay Peninsula, which straddle the now-submerged Sunda shelf, and analysed multilocus DNA data with a variety of coalescent and gene genealogy methods. Cross-shelf divergence in both species occurred well before the last glacial maximum, i.e., before the most recent land connection. However, post-divergence gene flow occurred, and it was more pronounced in A. longirostra (a highly vagile nectarivore/insectivore) than in M. malaccensis (an understory insectivore). Despite current habitat continuity on Borneo, the population of M. malaccensis in northeastern Borneo is substantially divergent from that on the rest of the island. The NE population experienced dramatic demographic fluctuations, probably because of competition with the other population, which expanded from western Borneo after the mid-Pleistocene. In contrast, the Borneo population of A. longirostra has little structure and appears to have experienced demographic expansion 16 kya, long after it had diverged from the Malay Peninsula population (630-690 kya). Malay Peninsula populations of both species have remained relatively stable. Overall, the most recent glacial period was not the chief determinant of the evolutionary dynamics of our study species, and in this respect, they are different from temperate species.


Assuntos
Evolução Biológica , Passeriformes/genética , Migração Animal , Animais , Teorema de Bayes , Bornéu , Citocromos b/genética , DNA Mitocondrial , Ecossistema , Fluxo Gênico , Variação Genética , Malásia , Dados de Sequência Molecular , NADH Desidrogenase/genética , Filogeografia , População/genética
18.
BMC Evol Biol ; 11: 141, 2011 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-21612607

RESUMO

BACKGROUND: Microinversions are cytologically undetectable inversions of DNA sequences that accumulate slowly in genomes. Like many other rare genomic changes (RGCs), microinversions are thought to be virtually homoplasy-free evolutionary characters, suggesting that they may be very useful for difficult phylogenetic problems such as the avian tree of life. However, few detailed surveys of these genomic rearrangements have been conducted, making it difficult to assess this hypothesis or understand the impact of microinversions upon genome evolution. RESULTS: We surveyed non-coding sequence data from a recent avian phylogenetic study and found substantially more microinversions than expected based upon prior information about vertebrate inversion rates, although this is likely due to underestimation of these rates in previous studies. Most microinversions were lineage-specific or united well-accepted groups. However, some homoplastic microinversions were evident among the informative characters. Hemiplasy, which reflects differences between gene trees and the species tree, did not explain the observed homoplasy. Two specific loci were microinversion hotspots, with high numbers of inversions that included both the homoplastic as well as some overlapping microinversions. Neither stem-loop structures nor detectable sequence motifs were associated with microinversions in the hotspots. CONCLUSIONS: Microinversions can provide valuable phylogenetic information, although power analysis indicates that large amounts of sequence data will be necessary to identify enough inversions (and similar RGCs) to resolve short branches in the tree of life. Moreover, microinversions are not perfect characters and should be interpreted with caution, just as with any other character type. Independent of their use for phylogenetic analyses, microinversions are important because they have the potential to complicate alignment of non-coding sequences. Despite their low rate of accumulation, they have clearly contributed to genome evolution, suggesting that active identification of microinversions will prove useful in future phylogenomic studies.


Assuntos
Aves/genética , Inversão Cromossômica , Animais , Sequência de Bases , Evolução Molecular , Loci Gênicos , Genoma , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
20.
Evolution ; 65(2): 321-34, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20796023

RESUMO

Sundaland, a biogeographic region of Southeast Asia, is a major biodiversity hotspot. However, little is known about the relative importance of Pleistocene habitat barriers and rivers in structuring populations and promoting diversification here. We sampled 16 lowland rainforest bird species primarily from peninsular Malaysia and Borneo to test the long-standing hypothesis that animals on different Sundaic landmasses intermixed extensively when lower sea-levels during the Last Glacial Maximum (LGM) exposed land-bridges. This hypothesis was rejected in all but five species through coalescent simulations. Furthermore, we detected a range of phylogeographic patterns; Bornean populations are often genetically distinct from each other, despite their current habitat connectivity. Environmental niche modeling showed that the presence of unsuitable habitats between western and eastern Sundaland during the LGM coincided with deeper interpopulation genetic divergences. The location of this habitat barrier had been hypothesized previously based on other evidence. Paleo-riverine barriers are unlikely to have produced such a pattern, but we cannot rule out that they acted with habitat changes to impede population exchanges across the Sunda shelf. The distinctiveness of northeastern Borneo populations may be underlied by a combination of factors such as rivers, LGM expansion of montane forests and other aspects of regional physiography.


Assuntos
Modelos Genéticos , Passeriformes/genética , Animais , Bornéu , Ecossistema , Malásia , Filogeografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA