Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 709: 136075, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31887527

RESUMO

Biogeochemical gradients in streambeds are steep and can vary over short distances often making adequate characterisation of sediment biogeochemical processes challenging. This paper provides an overview and comparison of streambed pore-water sampling methods, highlighting their capacity to address gaps in our understanding of streambed biogeochemical processes. This work reviews and critiques available pore-water sampling techniques to characterise streambed biogeochemical conditions, including their characteristic spatial and temporal resolutions, and associated advantages and limitations. A field study comparing three commonly-used pore-water sampling techniques (multilevel mini-piezometers, miniature drivepoint samplers and diffusive equilibrium in thin-film gels) was conducted to assess differences in observed nitrate and ammonium concentration profiles. Pore-water nitrate concentrations did not differ significantly between sampling methods (p-value = 0.54) with mean concentrations of 2.53, 4.08 and 4.02 mg l-1 observed with the multilevel mini-piezometers, miniature drivepoint samplers and diffusive equilibrium in thin-film gel samplers, respectively. Pore-water ammonium concentrations, however, were significantly higher in pore-water extracted by multilevel mini-piezometers (3.83 mg l-1) and significantly lower where sampled with miniature drivepoint samplers (1.05 mg l-1, p-values <0.01). Differences in observed pore-water ammonium concentration profiles between active (suction: multilevel mini-piezometers) and passive (equilibrium; diffusive equilibrium in thin-film gels) samplers were further explored under laboratory conditions. Measured pore-water ammonium concentrations were significantly greater when sampled by diffusive equilibrium in thin-film gels than with multilevel mini-piezometers (all p-values ≤0.02). The findings of this study have critical implications for the interpretation of field-based research on hyporheic zone biogeochemical cycling and highlight the need for more systematic testing of sampling protocols. For the first time, the impact of different active and passive pore-water sampling methods is addressed systematically here, highlighting to what degree the choice of pore-water sampling methods affects research outcomes, with relevance for the interpretation of previously published work as well as future studies.

2.
Ecol Lett ; 20(10): 1250-1260, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28853241

RESUMO

Gross primary production (GPP) is the largest flux in the carbon cycle, yet its response to global warming is highly uncertain. The temperature dependence of GPP is directly linked to photosynthetic physiology, but the response of GPP to warming over longer timescales could also be shaped by ecological and evolutionary processes that drive variation in community structure and functional trait distributions. Here, we show that selection on photosynthetic traits within and across taxa dampens the effects of temperature on GPP across a catchment of geothermally heated streams. Autotrophs from cold streams had higher photosynthetic rates and after accounting for differences in biomass among sites, biomass-specific GPP was independent of temperature in spite of a 20 °C thermal gradient. Our results suggest that temperature compensation of photosynthetic rates constrains the long-term temperature dependence of GPP, and highlights the importance of considering physiological, ecological and evolutionary mechanisms when predicting how ecosystem-level processes respond to warming.


Assuntos
Ciclo do Carbono , Temperatura , Biomassa , Ecossistema , Fotossíntese
4.
ISME J ; 11(6): 1386-1399, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28244978

RESUMO

Oxygen minimum zones (OMZs) contain the largest pools of oceanic methane but its origin and fate are poorly understood. High-resolution (<15 m) water column profiles revealed a 300 m thick layer of elevated methane (20-105 nM) in the anoxic core of the largest OMZ, the Eastern Tropical North Pacific. Sediment core incubations identified a clear benthic methane source where the OMZ meets the continental shelf, between 350 and 650 m, with the flux reflecting the concentration of methane in the overlying anoxic water. Further incubations characterised a methanogenic potential in the presence of both porewater sulphate and nitrate of up to 88 nmol g-1day-1 in the sediment surface layer. In these methane-producing sediments, the majority (85%) of methyl coenzyme M reductase alpha subunit (mcrA) gene sequences clustered with Methanosarcinaceae (⩾96% similarity to Methanococcoides sp.), a family capable of performing non-competitive methanogenesis. Incubations with 13C-CH4 showed potential for both aerobic and anaerobic methane oxidation in the waters within and above the OMZ. Both aerobic and anaerobic methane oxidation is corroborated by the presence of particulate methane monooxygenase (pmoA) gene sequences, related to type I methanotrophs and the lineage of Candidatus Methylomirabilis oxyfera, known to perform nitrite-dependent anaerobic methane oxidation (N-DAMO), respectively.


Assuntos
Bactérias/genética , Metano/química , Oxigênio/química , Oxigenases/metabolismo , Água do Mar/química , Aerobiose , Anaerobiose , Nitratos , Oxirredução , Oxigenases/genética , Oceano Pacífico , Água do Mar/microbiologia , Microbiologia da Água
6.
ISME J ; 9(10): 2304-14, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26057842

RESUMO

Our understanding of the role of freshwaters in the global carbon cycle is being revised, but there is still a lack of data, especially for the cycling of methane, in rivers and streams. Unravelling the role of methanotrophy is key to determining the fate of methane in rivers. Here we focus on the carbon conversion efficiency (CCE) of methanotrophy, that is, how much organic carbon is produced per mole of CH4 oxidised, and how this is influenced by variation in methanotroph communities. First, we show that the CCE of riverbed methanotrophs is consistently high (~50%) across a wide range of methane concentrations (~10-7000 nM) and despite a 10-fold span in the rate of methane oxidation. Then, we show that this high conversion efficiency is largely conserved (50%± confidence interval 44-56%) across pronounced variation in the key functional gene (70 operational taxonomic units (OTUs)), particulate methane monooxygenase (pmoA), and marked shifts in the abundance of Type I and Type II methanotrophs in eight replicate chalk streams. These data may suggest a degree of functional redundancy within the variable methanotroph community inhabiting these streams and that some of the variation in pmoA may reflect a suite of enzymes of different methane affinities which enables such a large range of methane concentrations to be oxidised. The latter, coupled to their high CCE, enables the methanotrophs to sustain net production throughout the year, regardless of the marked temporal and spatial changes that occur in methane.


Assuntos
Bactérias , Sequestro de Carbono , Sedimentos Geológicos/química , Metano/metabolismo , Rios/química , Bactérias/isolamento & purificação , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Methylocystaceae/genética , Oxirredução , Oxigenases/genética , Filogenia , Rios/microbiologia
7.
Proc Biol Sci ; 281(1783): 20132854, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24695425

RESUMO

Methane is oversaturated relative to the atmosphere in many rivers, yet its cycling and fate is poorly understood. While photosynthesis is the dominant source of autotrophic carbon to rivers, chemosynthesis and particularly methane oxidation could provide alternative sources of primary production where the riverbed is heavily shaded or at depth beneath the sediment surface. Here, we highlight geographically widespread methanotrophic carbon fixation within the gravel riverbeds of over 30 chalk rivers. In 15 of these, the potential for methane oxidation (methanotrophy) was also compared with photosynthesis. In addition, we performed detailed concurrent measurements of photosynthesis and methanotrophy in one large chalk river over a complete annual cycle, where we found methanotrophy to be active to at least 15 cm into the riverbed and to be strongly substrate limited. The seasonal trend in methanotrophic activity reflected that of the riverine methane concentrations, and thus the highest rates were measured in mid-summer. At the sediment surface, photosynthesis was limited by light for most of the year with heavy shading induced by dense beds of aquatic macrophytes. Across 15 rivers, in late summer, we conservatively calculated that net methanotrophy was equivalent to between 1% and 46% of benthic net photosynthetic production within the gravel riverbed, with a median value of 4%. Hence, riverbed chemosynthesis, coupled to the oxidation of methane, is widespread and significant in English chalk rivers.


Assuntos
Sequestro de Carbono , Sedimentos Geológicos/química , Metano/metabolismo , Fotossíntese , Rios/química , Inglaterra , Geografia , Oxirredução , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA