Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Xenobiotica ; : 1-13, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647387

RESUMO

Background: Monomethyl auristatin E (MMAE) has been used as a payload for several Food and Drug Administration (FDA) approved antibody-drug conjugates (ADCs). It is known that MMAE is released from the ADC following binding, internalization and proteolytic degradation in target tissues. A striking discrepancy in systemic MMAE levels has been observed across species with 50-fold higher MMAE levels in human than that in rodents when normalized by ADC dose with unknown mechanism.Hypothesis and purpose: Multiple factors could affect systemic MMAE levels such as production and elimination of unconjugated MMAE following ADC dosing. In this study, we have explored whether MMAE displays differential red blood cell (RBC) partitioning across species that may contribute to the different MMAE levels seen between human and animals.Experiments: To determine MMAE RBC partitioning, tritium labeled MMAE ([3H]-MMAE) was incubated in whole blood from mice, rats, monkeys and humans in vitro, then RBC partitioning was determined and compared across species. To test whether MMAE released from the ADC would show any difference in RBC partitioning, pinatuzumab vedotin or polatuzumab vedotin was administered to mice, rats, and monkeys. MMAE levels were measured in both blood and plasma, and the ratios of MMAE levels were calculated as blood-to-plasma ratio (in vivo RBC partitioning).Results: Our in vitro data showed that unconjugated MMAE has a species-dependent RBC partitioning with strong RBC partitioning in mouse, rat, followed by monkey blood, whereas minimal RBC partitioning was seen in human blood. Incubation of 2 nM of MMAE in mouse blood resulted in a blood-to-plasma ratio of 11.8 ± 0.291, followed by rat, monkey, and human at 2.36 ± 0.0825, 1.57 ± 0.0250, and 0.976 ± 0.0620, respectively. MMAE RBC partitioning is also concentration-dependent, with an inverse relationship between RBC partitioning and MMAE concentration (higher RBC partitioning at lower concentration). In vivo dosing of pinatuzumab vedotin in mouse displayed systemic MMAE at about a 5-fold higher blood concentration compared to plasma concentration once MMAE reached a pseudo-equilibrium, while systemic MMAE from blood and plasma concentration showed a 1.65-fold difference in rat.Implication and conclusion: These data demonstrated that MMAE has a distinct RBC partitioning across different species, which may contribute to, at least in part, to the differential in the systemic MMAE levels observed in vivo between preclinical and clinical studies. These findings highlight the importance of fully characterizing the ADME properties of both the ADC and its payload, to enable better translation from animals to human for ADC development.

2.
Adv Drug Deliv Rev ; 207: 115193, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311111

RESUMO

The favorable benefit-risk profile of polatuzumab vedotin, as demonstrated in a pivotal Phase Ib/II randomized study (GO29365; NCT02257567), coupled with the need for effective therapies in relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL), prompted the need to accelerate polatuzumab vedotin development. An integrated, fit-for-purpose clinical pharmacology package was designed to support regulatory approval. To address key clinical pharmacology questions without dedicated clinical pharmacology studies, we leveraged non-clinical and clinical data for polatuzumab vedotin, published clinical data for brentuximab vedotin, a similar antibody-drug conjugate, and physiologically based pharmacokinetic and population pharmacokinetic modeling approaches. We review strategies and model-informed outcomes that contributed to regulatory approval of polatuzumab vedotin plus bendamustine and rituximab in R/R DLBCL. These strategies made polatuzumab vedotin available to patients earlier than previously possible; depending on the strength of available data and the regulatory/competitive environment, they may also prove useful in accelerating the development of other agents.


Assuntos
Imunoconjugados , Linfoma Difuso de Grandes Células B , Linfoma não Hodgkin , Farmacologia Clínica , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Linfoma não Hodgkin/tratamento farmacológico , Linfoma não Hodgkin/patologia , Linfoma Difuso de Grandes Células B/tratamento farmacológico
3.
J Pharm Sci ; 112(11): 2910-2920, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37429356

RESUMO

MTBT1466A is a high-affinity TGFß3-specific humanized IgG1 monoclonal antibody with reduced Fc effector function, currently under investigation in clinical trials as a potential anti-fibrotic therapy. Here, we characterized the pharmacokinetics (PK) and pharmacodynamics (PD) of MTBT1466A in mice and monkeys and predicted the PK/PD of MTBT1466A in humans to guide the selection of the first-in-human (FIH) starting dose. MTBT1466A demonstrated a typical IgG1-like biphasic PK profile in monkeys, and the predicted human clearance of 2.69 mL/day/kg and t1/2 of 20.4 days are consistent with those expected for a human IgG1 antibody. In a mouse model of bleomycin-induced lung fibrosis, changes in expression of TGFß3-related genes, serpine1, fibronectin-1, and collagen 1A1 were used as PD biomarkers to determine the minimum pharmacologically active dose of 1 mg/kg. Unlike in the fibrosis mouse model, evidence of target engagement in healthy monkeys was only observed at higher doses. Using a PKPD-guided approach, the recommended FIH dose of 50 mg, IV, provided exposures that were shown to be safe and well tolerated in healthy volunteers. MTBT1466A PK in healthy volunteers was predicted reasonably well using a PK model with allometric scaling of PK parameters from monkey data. Taken together, this work provides insights into the PK/PD behavior of MTBT1466A in preclinical species, and supports the translatability of the preclinical data into the clinic.

4.
Chem Sci ; 13(11): 3147-3160, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35414872

RESUMO

The antibody-drug conjugate (ADC) is a well-validated modality for the cell-specific delivery of small molecules with impact expanding rapidly beyond their originally-intended purpose of treating cancer. However, antibody-mediated delivery (AMD) remains inefficient, limiting its applicability to targeting highly potent payloads to cells with high antigen expression. Maximizing the number of payloads delivered per antibody is one key way in which delivery efficiency can be improved, although this has been challenging to carry out; with few exceptions, increasing the drug-to-antibody ratio (DAR) above ∼4 typically destroys the biophysical properties and in vivo efficacy for ADCs. Herein, we describe the development of a novel bioconjugation platform combining cysteine-engineered (THIOMAB) antibodies and recombinant XTEN polypeptides for the unprecedented generation of homogeneous, stable "TXCs" with DAR of up to 18. Across three different bioactive payloads, we demonstrated improved AMD to tumors and Staphylococcus aureus bacteria for high-DAR TXCs relative to conventional low-DAR ADCs.

5.
Breast Cancer Res Treat ; 191(2): 303-317, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34708303

RESUMO

PURPOSE: Assessment of non-clinical safety signals relies on understanding species selectivity of antibodies. This is particularly important with antibody-drug conjugates, where it is key to determine target-dependent versus target-independent toxicity. Although it appears to be widely accepted that trastuzumab does not bind mouse or rat HER2/ErbB2/neu, numerous investigators continue to use mouse models to investigate safety signals of trastuzumab and trastuzumab emtansine (T-DM1). We, therefore, conducted a broad array of both binding and biologic studies to demonstrate selectivity of trastuzumab for human HER2 versus mouse/rat neu. METHODS: Binding of anti-neu and anti-HER2 antibodies was assessed by ELISA, FACS, IHC, Scatchard, and immunoblot methods in human, rat, and mouse cell lines. In human hepatocytes, T-DM1 uptake and catabolism were measured by LC-MS/MS; cell viability changes were determined using CellTiter-Glo. RESULTS: Our data demonstrate, using different binding methods, lack of trastuzumab binding to rat or mouse neu. Structural studies show important amino acid differences in the trastuzumab-HER2 binding interface between mouse/rat and human HER2 ECD. Substitution of these rodent amino acid residues into human HER2 abolish binding of trastuzumab. Cell viability changes, uptake, and catabolism of T-DM1 versus a DM1 non-targeted control ADC were comparable, indicating target-independent effects of the DM1-containing ADCs. Moreover, trastuzumab binding to human or mouse hepatocytes was not detected. CONCLUSIONS: These data, in total, demonstrate that trastuzumab, and by extension T-DM1, do not bind rat or mouse neu, underscoring the importance of species selection for safety studies investigating trastuzumab or trastuzumab-based therapeutics.


Assuntos
Neoplasias da Mama , Maitansina , Animais , Anticorpos Monoclonais Humanizados , Cromatografia Líquida , Feminino , Humanos , Maitansina/efeitos adversos , Camundongos , Ratos , Receptor ErbB-2/genética , Espectrometria de Massas em Tandem , Trastuzumab/efeitos adversos
6.
Toxicol Appl Pharmacol ; 421: 115534, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33852878

RESUMO

Monomethyl auristatin E (MMAE) is a potent anti-cancer microtubule-targeting agent (MTA) used as a payload in three approved MMAE-containing antibody drug conjugates (ADCs) and multiple ADCs in clinical development to treat different types of cancers. Unfortunately, MMAE-ADCs can induce peripheral neuropathy, a frequent adverse event leading to treatment dose reduction or discontinuation and subsequent clinical termination of many MMAE-ADCs. MMAE-ADC-induced peripheral neuropathy is attributed to non-specific uptake of the ADC in peripheral nerves and release of MMAE, disrupting microtubules (MTs) and causing neurodegeneration. However, molecular mechanisms underlying MMAE and MMAE-ADC effects on MTs remain unclear. Here, we characterized MMAE-tubulin/MT interactions in reconstituted in vitro soluble tubulin or MT systems and evaluated MMAE and vcMMAE-ADCs in cultured human MCF7 cells. MMAE bound to soluble tubulin heterodimers with a maximum stoichiometry of ~1:1, bound abundantly along the length of pre-assembled MTs and with high affinity at MT ends, introduced structural defects, suppressed MT dynamics, and reduced the kinetics and extent of MT assembly while promoting tubulin ring formation. In cells, MMAE and MMAE-ADC (via nonspecific uptake) suppressed proliferation, mitosis and MT dynamics, and disrupted the MT network. Comparing MMAE action to other MTAs supports the hypothesis that peripheral neuropathy severity is determined by the precise mechanism(s) of each individual drug-MT interaction (location of binding, affinity, effects on morphology and dynamics). This work demonstrates that MMAE binds extensively to tubulin and MTs and causes severe MT dysregulation, providing convincing evidence that MMAE-mediated inhibition of MT-dependent axonal transport leads to severe peripheral neuropathy.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Microtúbulos/efeitos dos fármacos , Oligopeptídeos/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Sistema Nervoso Periférico/efeitos dos fármacos , Moduladores de Tubulina/toxicidade , Tubulina (Proteína)/metabolismo , Transporte Axonal/efeitos dos fármacos , Sítios de Ligação , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Microtúbulos/metabolismo , Microtúbulos/patologia , Mitose/efeitos dos fármacos , Oligopeptídeos/metabolismo , Sistema Nervoso Periférico/metabolismo , Sistema Nervoso Periférico/patologia , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/patologia , Ligação Proteica , Medição de Risco , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Fuso Acromático/patologia , Moduladores de Tubulina/metabolismo
7.
J Clin Med ; 10(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806916

RESUMO

Polatuzumab vedotin (or POLIVY®), an antibody-drug conjugate (ADC) composed of a polatuzumab monoclonal antibody conjugated to monomethyl auristatin E (MMAE) via a cleavable dipeptide linker, has been approved by the United States Food and Drug Administration (FDA) for the treatment of diffuse large B-cell lymphoma (DLBCL). To support the clinical development of polatuzumab vedotin, we characterized the distribution, catabolism/metabolism, and elimination properties of polatuzumab vedotin and its unconjugated MMAE payload in Sprague Dawley rats. Several radiolabeled probes were developed to track the fate of different components of the ADC, with 125I and 111In used to label the antibody component and 3H to label the MMAE payload of the ADC. Following a single intravenous administration of the radiolabeled probes into normal or bile-duct cannulated rats, blood, various tissues, and excreta samples were collected over 7-14 days post-dose and analyzed for radioactivity and to characterize the metabolites/catabolites. The plasma radioactivity of polatuzumab vedotin showed a biphasic elimination profile similar to that of unconjugated polatuzumab but different from unconjugated radiolabeled MMAE, which had a fast clearance. The vast majority of the radiolabeled MMAE in plasma remained associated with antibodies, with a minor fraction as free MMAE and MMAE-containing catabolites. Similar to unconjugated mAb, polatuzumab vedotin showed a nonspecific distribution to multiple highly perfused organs, including the lungs, heart, liver, spleen, and kidneys, where the ADC underwent catabolism to release MMAE and other MMAE-containing catabolites. Both polatuzumab vedotin and unconjugated MMAE were mainly eliminated through the biliary fecal route (>90%) and a small fraction (<10%) was eliminated through renal excretion in the form of catabolites/metabolites, among which, MMAE was identified as the major species, along with several other minor species. These studies provided significant insight into ADC's absorption, distribution, metabolism, and elimination (ADME) properties, which supports the clinical development of POLIVY.

8.
Mol Ther ; 29(2): 555-570, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33038322

RESUMO

Tremendous innovation is underway among a rapidly expanding repertoire of promising personalized immune-based treatments. Therapeutic cancer vaccines (TCVs) are attractive systemic immunotherapies that activate and expand antigen-specific CD8+ and CD4+ T cells to enhance anti-tumor immunity. Our review highlights key issues impacting TCVs in clinical practice and reports on progress in development. We review the mechanism of action, immune-monitoring, dosing strategies, combinations, obstacles, and regulation of cancer vaccines. Most trials of personalized TCVs are ongoing and represent diverse platforms with predominantly early investigations of mRNA, DNA, or peptide-based targeting strategies against neoantigens in solid tumors, with many in combination immunotherapies. Multiple delivery systems, routes of administration, and dosing strategies are used. Intravenous or intramuscular administration is common, including delivery by lipid nanoparticles. Absorption and biodistribution impact antigen uptake, expression, and presentation, affecting the strength, speed, and duration of immune response. The emerging trials illustrate the complexity of developing this class of innovative immunotherapies. Methodical testing of the multiple potential factors influencing immune responses, as well as refined quantitative methodologies to facilitate optimal dosing strategies, could help resolve uncertainty of therapeutic approaches. To increase the likelihood of success in bringing these medicines to patients, several unique development challenges must be overcome.


Assuntos
Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais , Ensaios Clínicos como Assunto , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Desenvolvimento de Medicamentos , Humanos , Imunoterapia/métodos , Medicina de Precisão/métodos , Linfócitos T/imunologia
9.
Drug Metab Dispos ; 48(12): 1247-1256, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33020064

RESUMO

Anti-Ly6E-seco-cyclopropabenzindol-4-one dimer antibody-drug conjugate (ADC) has been reported to form an adduct with α1-microglobulin (A1M) in animal plasma, but with unknown impact on ADC PK and tissue distribution. In this study, we compared the PK and tissue distribution of anti-Ly6E ADC with unconjugated anti-Ly6E mAb in rodents and monkeys. For PK studies, animals received an intravenous administration of anti-Ly6E ADC or unconjugated anti-Ly6E mAb. Plasma samples were analyzed for total antibody (Tab) levels and A1M adduct formation. PK parameters were generated from dose-normalized plasma concentrations. Tissue distribution was determined in tumor-bearing mice after a single intravenous dosing of radiolabeled ADC or mAb. Tissue radioactivity levels were analyzed using a gamma counter. The impact of A1M adduct formation on target cell binding was assessed in an in vitro cell binding assay. The results show that ADC Tab clearance was slower than that of mAb in mice and rats but faster than mAb in monkeys. Correspondingly, the formation of A1M adduct appeared to be faster and higher in mice, followed by rats, and slowest in monkeys. Although ADC tended to show an overall lower distribution to normal tissues, it had a strikingly reduced distribution to tumors compared with mAb, likely due to A1M adduct formation interfering with target binding, as demonstrated by the in vitro cell binding assay. Together, these data 1) demonstrate that anti-Ly6E ADC that forms A1M adduct had slower systemic clearance with strikingly reduced tumor distribution and 2) highlight the importance of selecting an appropriate linker-drug for successful ADC development. SIGNIFICANCE STATEMENT: Anti-lymphocyte antigen 6 complex, locus E, ADC with seco-cyclopropabenzindol-4-one-dimer payload formed adduct with A1M, which led to a decrease in systemic clearance but also attenuated tumor distribution. These findings demonstrate the importance of selecting an appropriate linker-drug for ADC development and also highlight the value of a mechanistic understanding of ADC biotransformation, which could provide insight into ADC molecule design, optimization, and selection.


Assuntos
alfa-Globulinas/metabolismo , Antineoplásicos Imunológicos/farmacocinética , Imunoconjugados/farmacocinética , Neoplasias/tratamento farmacológico , Animais , Antígenos de Superfície , Antineoplásicos Imunológicos/administração & dosagem , Linhagem Celular Tumoral , Feminino , Proteínas Ligadas por GPI/antagonistas & inibidores , Humanos , Imunoconjugados/administração & dosagem , Macaca fascicularis , Taxa de Depuração Metabólica , Camundongos , Neoplasias/patologia , Ratos , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Drug Metab Dispos ; 48(11): 1161-1168, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32839277

RESUMO

Invasive Staphylococcus aureus infection is a leading cause of infectious disease-related deaths because S. aureus survives within host phagocytic cells, from which the bacteria are not adequately eliminated using current antibiotic treatments. Anti-S. aureus THIOMAB antibody-antibiotic conjugate (TAC), an anti-S. aureus antibody conjugated with antibiotic payload dmDNA31, was designed to deliver antibiotics into phagocytes, thereby killing intracellular S. aureus Herein, we present the distribution, metabolism/catabolism, and elimination properties for this modality. The tissue distribution of TAC and the release and elimination of its payload dmDNA31 were characterized in rats using multiple approaches. Intravenous injection of unconjugated [14C]dmDNA31 to rats resulted in a rapid clearance in both systemic circulation and tissues, with biliary secretion as the major route of elimination. Six major metabolites were identified. When [14C]dmDNA31 was conjugated to an antibody as TAC and administered to rat intravenously, a sustained exposure was observed in both systemic circulation and tissues. The dmDNA31 in blood and tissues mainly remained in conjugated form after administering TAC, although minimal deconjugation of dmDNA31 from TAC was also observed. Several TAC catabolites were identified, which were mainly eliminated through the biliary-fecal route, with dmDNA31 and deacetylated dmDNA31 as the most abundant catabolites. In summary, these studies provide a comprehensive characterization of the distribution, metabolism/catabolism, and elimination properties of TAC. These data fully support further clinical development of TAC for the invasive and difficult-to-treat S. aureus infection. SIGNIFICANCE STATEMENT: The present studies provide a comprehensive investigation of the absorption, distribution, metabolism/catabolism, and elimination of the first antibody-antibiotic conjugate developed for the treatment of an infectious disease. Although many antibody-drug conjugates are in development for various disease indications, only a limited amount of absorption, distribution, metabolism/catabolism, and elimination information is available in the literature. This study demonstrates the use of radiolabeling technology to delineate the absorption, distribution, metabolism/catabolism, and elimination properties of a complex modality and help address the key questions related to clinical pharmacological studies.


Assuntos
Antibacterianos/farmacocinética , Anticorpos Antibacterianos/farmacologia , Imunoconjugados/farmacocinética , Animais , Antibacterianos/administração & dosagem , Feminino , Humanos , Imunoconjugados/administração & dosagem , Injeções Intravenosas , Masculino , Modelos Animais , Ratos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/imunologia , Distribuição Tecidual
11.
Pharmacol Res Perspect ; 8(2): e00573, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32125783

RESUMO

A phage-derived human monoclonal antibody against VEGF-C was developed as a potential anti-tumor therapeutic and exhibited fast clearance in preclinical species, with notably faster clearance in serum than in plasma. The purpose of this work was to understand the factors contributing to its fast clearance. In vitro incubations in animal and human blood, plasma, and serum were conducted with radiolabeled anti-VEGF-C to determine potential protein and cell-based interactions with the antibody as well as any matrix-dependent recovery dependent upon the matrix. A tissue distribution study was conducted in mice with and without heparin infusion in order to identify a tissue sink and determine whether heparin could affect antibody recovery from serum and/or plasma. Incubation of radiolabeled anti-VEGF-C in human and animal blood, plasma, or serum revealed that the antibody formed a complex with an endogenous protein, likely VEGF-C. This complex was trapped within the blood clot during serum preparation from blood, but not within the blood cell pellet during plasma preparation. Low level heparin infusion in mice slowed down clot formation during serum preparation and allowed for better recovery of the radiolabeled antibody in serum. No tissue sink was found in mice. Thus, during this characterization, we determined that the blood sampling matrix greatly impacted the amount of antibody recovered in the samples, therefore, altering its derived pharmacokinetic parameters. Target biology should be considered when selecting appropriate sampling matrices for PK analysis.


Assuntos
Anticorpos Monoclonais/farmacocinética , Fator C de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Anticorpos Monoclonais/sangue , Artefatos , Coagulação Sanguínea , Feminino , Humanos , Macaca fascicularis , Camundongos Nus , Ratos Sprague-Dawley , Distribuição Tecidual , Fator C de Crescimento do Endotélio Vascular/imunologia
12.
MAbs ; 10(8): 1312-1321, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30183491

RESUMO

Few treatment options are available for acute myeloid leukemia (AML) patients. DCLL9718A is an antibody-drug conjugate that targets C-type lectin-like molecule-1 (CLL-1). This receptor is prevalent on monocytes, neutrophils, and AML blast cells, and unlike CD33, is not expressed on hematopoietic stem cells, thus providing possible hematopoietic recovery. DCLL9718A comprises an anti-CLL-1 IgG1 antibody (MCLL0517A) linked to a pyrrolobenzodiazepine (PBD) dimer payload, via a cleavable disulfide-labile linker. Here, we characterize the in vitro and in vivo stability, the pharmacokinetics (PK) and pharmacodynamics (PD) of DCLL9718A and MCLL0517A in rodents and cynomolgus monkeys. Three key PK analytes were measured in these studies: total antibody, antibody-conjugated PBD dimer and unconjugated PBD dimer. In vitro, DCLL9718A, was stable with most (> 80%) of the PBD dimer payload remaining conjugated to the antibody over 96 hours. This was recapitulated in vivo with antibody-conjugated PBD dimer clearance estimates similar to DCLL9718A total antibody clearance. Both DCLL9718A and MCLL0517A showed linear PK in the non-binding rodent species, and non-linear PK in cynomolgus monkeys, a binding species. The PK data indicated minimal impact of conjugation on the disposition of DCLL9718A total antibody. Finally, in cynomolgus monkey, MCLL0517A showed target engagement at all doses tested (0.5 and 20 mg/kg) as measured by receptor occupancy, and DCLL9718A (at doses of 0.05, 0.1 and 0.2 mg/kg) showed strong PD activity as evidenced by notable reduction in monocytes and neutrophils.


Assuntos
Imunoconjugados/farmacocinética , Imunoconjugados/uso terapêutico , Leucemia Mieloide/tratamento farmacológico , Leucemia Mieloide/metabolismo , Doença Aguda , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Área Sob a Curva , Benzodiazepinas/imunologia , Benzodiazepinas/uso terapêutico , Humanos , Imunoconjugados/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/uso terapêutico , Lectinas Tipo C/imunologia , Leucemia Mieloide/sangue , Macaca fascicularis , Taxa de Depuração Metabólica , Camundongos , Pirróis/imunologia , Pirróis/uso terapêutico , Ratos , Receptores Mitogênicos/imunologia , Especificidade da Espécie
13.
Mol Cancer Ther ; 17(7): 1441-1453, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29695635

RESUMO

The receptor tyrosine kinase HER2 is overexpressed in approximately 20% of breast cancer, and its amplification is associated with reduced survival. Trastuzumab emtansine (Kadcyla, T-DM1), an antibody-drug conjugate that is comprised of trastuzumab covalently linked to the antimitotic agent DM1 through a stable linker, was designed to selectively deliver DM1 to HER2-overexpressing tumor cells. T-DM1 is approved for the treatment of patients with HER2-positive metastatic breast cancer following progression on trastuzumab and a taxane. Despite the improvement in clinical outcome, many patients who initially respond to T-DM1 treatment eventually develop progressive disease. The mechanisms that contribute to T-DM1 resistance are not fully understood. To this end, we developed T-DM1-resistant in vitro models to examine the mechanisms of acquired T-DM1 resistance. We demonstrate that decreased HER2 and upregulation of MDR1 contribute to T-DM1 resistance in KPL-4 T-DM1-resistant cells. In contrast, both loss of SLC46A3 and PTEN deficiency play a role in conferring resistance in BT-474M1 T-DM1-resistant cells. Our data suggest that these two cell lines acquire resistance through distinct mechanisms. Furthermore, we show that the KPL-4 T-DM1 resistance can be overcome by treatment with an inhibitor of MDR1, whereas a PI3K inhibitor can rescue PTEN loss-induced resistance in T-DM1-resistant BT-474M1 cells. Our results provide a rationale for developing therapeutic strategies to enhance T-DM1 clinical efficacy by combining T-DM1 and other inhibitors that target signaling transduction or resistance pathways. Mol Cancer Ther; 17(7); 1441-53. ©2018 AACR.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Receptor ErbB-2/genética , Trastuzumab/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoconjugados/farmacologia , Camundongos , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Taxoides/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Regul Toxicol Pharmacol ; 82: 1-13, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27773754

RESUMO

Antibody drug conjugates (ADC) consist of potent cytotoxic drugs conjugated to antibodies via chemical linkers, which enables specific targeting of tumor cells while reducing systemic exposure to the cytotoxic drug and improving the therapeutic window. The valine citrulline monomethyl auristatin E (vcMMAE, conventional linker-drug) ADC platform has shown promising clinical activity in several cancers, but peripheral neuropathy (PN) is a frequent adverse event leading to treatment discontinuation and dose reduction. This was not predicted based on nonclinical toxicology studies in monkeys or rats treated with vcMMAE ADCs. We evaluated four hypotheses for the lack of translatability of PN with vcMMAE ADCs: 1) species differences in exposure; 2) insensitivity of animal models; 3) species differences in target biology and other vcMMAE ADC properties in peripheral nerves and 4) increased susceptibility of patient population. The result of this hypothesis-based approach identified opportunities to improve the predictivity of PN in our animal models by increasing duration of exposure and adding an expanded neurohistopathology assessment of peripheral nerves. The utility of a predictive animal model would be to provide possible mitigation strategies in the clinic with vcMMAE ADCs and help to screen the next generation microtubule inhibitor (MTI) ADCs for reduced PN.


Assuntos
Anticorpos/toxicidade , Antineoplásicos/toxicidade , Imunoconjugados/toxicidade , Oligopeptídeos/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Testes de Toxicidade/métodos , Pesquisa Translacional Biomédica/métodos , Moduladores de Tubulina/toxicidade , Animais , Anticorpos/química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Relação Dose-Resposta a Droga , Composição de Medicamentos , Interações Medicamentosas , Humanos , Imunoconjugados/química , Imunoconjugados/farmacocinética , Modelos Animais , Oligopeptídeos/química , Oligopeptídeos/farmacocinética , Farmacogenética , Medição de Risco , Especificidade da Espécie , Fatores de Tempo , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacocinética
15.
Bioanalysis ; 7(13): 1583-604, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26226309

RESUMO

The in vivo stability and catabolism of antibody-drug conjugates (ADCs) directly impact their PK, efficacy and safety, and metabolites of the cytotoxic or small molecule drug component of an ADC can further complicate these factors. This perspective highlights the importance of understanding ADC catabolism and the associated bioanalytical challenges. We evaluated different bioanalytical approaches to qualitatively and quantitatively characterize ADC catabolites. Here we review and discuss the rationale and experimental strategies used to design bioanalytical assays for characterization of ADC catabolism and supporting ADME studies during ADC clinical development. This review covers both large and small molecule approaches, and uses examples from Kadcyla® (T-DM1) and a THIOMAB™ antibody-drug conjugate to illustrate the process.


Assuntos
Anticorpos Monoclonais/imunologia , Imunoconjugados/imunologia , Bioensaio , Humanos , Metabolismo
16.
Drug Metab Lett ; 9(2): 119-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26031461

RESUMO

DM1, a derivative of maytansine, is the cytotoxic component of the antibody-drug conjugate trastuzumab emtansine (T-DM1). Understanding the disposition and metabolism of DM1 would help to assess (1) any tissue-specific distribution and risk for potential drug-drug interactions and (2) the need for special patient population studies. To this end, the current study determined the disposition and metabolism of DM1 following single intravenous administration of [(3)H]-DM1 in Sprague Dawley rats. Blood, tissues, urine, bile, and feces were collected up to 5 days after dose administration and analyzed for total radioactivity and metabolites. Results showed that radioactivity cleared rapidly from the blood and quickly distributed to the lungs, liver, kidneys, spleen, heart, gastrointestinal tract, adrenal glands, and other tissues without significant accumulation or persistence. The majority of dosed radioactivity was recovered in feces (~100% of the injected dose over 5 days) with biliary elimination being the predominant route (~46% of the injected dose over 3 days). Excretion in urine was minimal (~5% of the injected dose over 5 days). Mass balance was achieved over 5 days. An analysis of bile samples revealed a small fraction of intact DM1 and a predominance of DM1 metabolites formed through oxidation, hydrolysis, S-methylation, and glutathione and its related conjugates. Collectively, these data demonstrate that DM1 is extensively distributed and quickly cleared from blood, and undergoes extensive metabolism to form multiple metabolites, which are mainly eliminated through the hepatic-biliary route, suggesting that hepatic function (but not renal function) plays an important role in DM1 elimination.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Antineoplásicos/farmacocinética , Fígado/metabolismo , Maitansina/análogos & derivados , Ado-Trastuzumab Emtansina , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/sangue , Antineoplásicos/administração & dosagem , Antineoplásicos/sangue , Bile/metabolismo , Biotransformação , Fezes/química , Feminino , Glutationa/metabolismo , Eliminação Hepatobiliar , Hidrólise , Injeções Intravenosas , Maitansina/administração & dosagem , Maitansina/sangue , Maitansina/farmacocinética , Metilação , Estrutura Molecular , Oxirredução , Ratos Sprague-Dawley , Eliminação Renal , Distribuição Tecidual , Trastuzumab
17.
Clin Cancer Res ; 21(1): 123-33, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25370470

RESUMO

PURPOSE: Trastuzumab-emtansine (T-DM1) is an antibody-drug conjugate (ADC) comprising the cytotoxic agent DM1 conjugated to trastuzumab with a stable linker. Thrombocytopenia was the dose-limiting toxicity in the phase I study, and grade ≥3 thrombocytopenia occurred in up to 13% of patients receiving T-DM1 in phase III studies. We investigated the mechanism of T-DM1-induced thrombocytopenia. EXPERIMENTAL DESIGN: The effect of T-DM1 on platelet function was measured by aggregometry, and by flow cytometry to detect the markers of activation. The effect of T-DM1 on differentiation and maturation of megakaryocytes (MK) from human hematopoietic stem cells was assessed by flow cytometry and microscopy. Binding, uptake, and catabolism of T-DM1 in MKs, were assessed by various techniques including fluorescence microscopy, scintigraphy to detect T-[H(3)]-DM1 and (125)I-T-DM1, and mass spectrometry. The role of FcγRIIa was assessed using blocking antibodies and mutant constructs of trastuzumab that do not bind FcγR. RESULTS: T-DM1 had no direct effect on platelet activation and aggregation, but it did markedly inhibit MK differentiation via a cytotoxic effect. Inhibition occurred with DM1-containing ADCs but not with trastuzumab demonstrating a role for DM1. MKs internalized these ADCs in a HER2-independent, FcγRIIa-dependent manner, resulting in intracellular release of DM1. Binding and internalization of T-DM1 diminished as MKs matured; however, prolonged exposure of mature MKs to T-DM1 resulted in a disrupted cytoskeletal structure. CONCLUSIONS: These data support the hypothesis that T-DM1-induced thrombocytopenia is mediated in large part by DM1-induced impairment of MK differentiation, with a less pronounced effect on mature MKs.


Assuntos
Anticorpos Monoclonais Humanizados/efeitos adversos , Antineoplásicos/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Maitansina/análogos & derivados , Trombocitopenia/patologia , Ado-Trastuzumab Emtansina , Anticorpos Monoclonais Humanizados/administração & dosagem , Antineoplásicos/administração & dosagem , Neoplasias da Mama/complicações , Neoplasias da Mama/patologia , Diferenciação Celular/efeitos dos fármacos , Feminino , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/efeitos adversos , Maitansina/administração & dosagem , Maitansina/efeitos adversos , Megacariócitos/efeitos dos fármacos , Ativação Plaquetária/efeitos dos fármacos , Plasma Rico em Plaquetas/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Trombocitopenia/induzido quimicamente , Trombocitopenia/etiologia , Trastuzumab
18.
Clin Pharmacokinet ; 54(1): 81-93, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25223698

RESUMO

BACKGROUND AND OBJECTIVES: Monomethyl auristatin E (MMAE, a cytotoxic agent), upon releasing from valine-citrulline-MMAE (vc-MMAE) antibody-drug conjugates (ADCs), is expected to behave like small molecules. Therefore, evaluating the drug-drug interaction (DDI) potential associated with MMAE is important in the clinical development of ADCs. The objective of this work was to build a physiologically based pharmacokinetic (PBPK) model to assess MMAE-drug interactions for vc-MMAE ADCs. METHODS: A PBPK model linking antibody-conjugated MMAE (acMMAE) to its catabolite unconjugated MMAE associated with vc-MMAE ADCs was developed using a mixed 'bottom-up' and 'top-down' approach. The model was developed using in silico and in vitro data and in vivo pharmacokinetic data from anti-CD22-vc-MMAE ADC. Subsequently, the model was validated using clinical pharmacokinetic data from another vc-MMAE ADC, brentuximab vedotin. Finally, the verified model was used to simulate the results of clinical DDI studies between brentuximab vedotin and midazolam, ketoconazole, and rifampicin. RESULTS: The pharmacokinetic profile of acMMAE and unconjugated MMAE following administration of anti-CD22-vc-MMAE was well described by simulations using the developed PBPK model. The model's performance in predicting unconjugated MMAE pharmacokinetics was verified by successful simulation of the pharmacokinetic profile following brentuximab vedotin administration. The model simulated DDIs, expressed as area under the concentration-time curve (AUC) and maximum concentration (C max) ratios, were well within the two-fold of the observed data from clinical DDI studies. CONCLUSIONS: This work is the first demonstration of the use of PBPK modelling to predict MMAE-based DDI potential. The described model can be extended to assess the DDI potential of other vc-MMAE ADCs.


Assuntos
Imunoconjugados/farmacocinética , Modelos Biológicos , Oligopeptídeos/farmacocinética , Brentuximab Vedotin , Simulação por Computador , Interações Medicamentosas , Humanos , Imunoconjugados/farmacologia , Cetoconazol/farmacocinética , Cetoconazol/farmacologia , Midazolam/farmacocinética , Midazolam/farmacologia , Oligopeptídeos/farmacologia , Rifampina/farmacocinética , Rifampina/farmacologia
19.
MAbs ; 6(6): 1631-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25484068

RESUMO

Delta-like-4 ligand (DLL4) plays an important role in vascular development and is widely expressed on the vasculature of normal and tumor tissues. Anti-DLL4 is a humanized IgG1 monoclonal antibody against DLL4. The purpose of these studies was to characterize the pharmacokinetics (PK), tissue distribution, and anti-tumor efficacy of anti-DLL4 in mice over a range of doses. PK and tissue distribution of anti-DLL4 were determined in athymic nude mice after administration of single intravenous (IV) doses. In the tissue distribution study, radiolabeled anti-DLL4 (mixture of (125)Iodide and (111)Indium) was administered in the presence of increasing amounts of unlabeled anti-DLL4. Dose ranging anti-DLL4 anti-tumor efficacy was evaluated in athymic nude mice bearing MV522 human lung tumor xenografts. Anti-DLL4 had nonlinear PK in mice with rapid serum clearance at low doses and slower clearance at higher doses suggesting the involvement of target mediated clearance. Consistent with the PK data, anti-DLL4 was shown to specifically distribute to several normal tissues known to express DLL4 including the lung and liver. Maximal efficacy in the xenograft model was seen at doses ≥ 10 mg/kg when tissue sinks were presumably saturated, consistent with the PK and tissue distribution profiles. These findings highlight the importance of mechanistic understanding of antibody disposition to enable dosing strategies for maximizing efficacy.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Animais , Anticorpos Monoclonais Humanizados/sangue , Anticorpos Monoclonais Humanizados/imunologia , Área Sob a Curva , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Radioisótopos de Índio/farmacocinética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Radioisótopos do Iodo/farmacocinética , Neoplasias Pulmonares/imunologia , Proteínas de Membrana/imunologia , Taxa de Depuração Metabólica , Camundongos Nus , Distribuição Tecidual , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Med Chem ; 57(19): 7890-9, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25191794

RESUMO

Antibody-drug conjugates (ADCs) have a significant impact toward the treatment of cancer, as evidenced by the clinical activity of the recently approved ADCs, brentuximab vedotin for Hodgkin lymphoma and ado-trastuzumab emtansine (trastuzumab-MCC-DM1) for metastatic HER2+ breast cancer. DM1 is an analog of the natural product maytansine, a microtubule inhibitor that by itself has limited clinical activity and high systemic toxicity. However, by conjugation of DM1 to trastuzumab, the safety was improved and clinical activity was demonstrated. Here, we report that through chemical modification of the linker-drug and antibody engineering, the therapeutic activity of trastuzumab maytansinoid ADCs can be further improved. These improvements include eliminating DM1 release in the plasma and increasing the drug load by engineering four cysteine residues into the antibody. The chemical synthesis of highly stable linker-drugs and the modification of cysteine residues of engineered site-specific antibodies resulted in a homogeneous ADC with increased therapeutic activity compared to the clinically approved ADC, trastuzumab-MCC-DM1.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/síntese química , Imunoconjugados/farmacologia , Maitansina/análogos & derivados , Engenharia de Proteínas , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos , Trastuzumab
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA