Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Sep Sci ; 47(17): e2400340, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39215580

RESUMO

In this work, an easy, safe, simple, and efficient pH-switchable deep eutectic solvents (DESs)-based liquid phase microextraction followed by high-performance liquid chromatography-diode array detector analysis was developed for the determination of 1,3-dimethylamylamine (DMAA). The switchability of the obtained DESs was investigated by changing the pH. Then the best-selected DES was characterized and the application of the selected DES in the extraction of DMAA from sports nutrition and bodybuilding supplements was investigated. The DES synthesized from l-menthol: oleic acid in a molar ratio of 1:2 had the highest efficiency in the extraction of the target compound. Under the optimum conditions, (50 µL of DES, 100 µL of 4 mol/L KOH, 100 µL of 4 mol/L HCl, extraction time of 40 s and without salt addition) the calibration graph was linear in the range of 0.05-100 µg/kg and limit of detection was 0.02 µg/kg. The relative standard deviations including intra-day and inter-day for 10.0 µg/kg of DMAA in real samples were 2.7% (n = 7) and 5.3% (n = 7), respectively. The enrichment factor and percentage extraction recovery of the method were 283 and 85%, respectively. The relative recoveries for DMAA in different samples were in the range of 90%-109%.


Assuntos
Solventes Eutéticos Profundos , Suplementos Nutricionais , Cromatografia Líquida de Alta Pressão , Suplementos Nutricionais/análise , Concentração de Íons de Hidrogênio , Solventes Eutéticos Profundos/química , Aminas/análise , Aminas/química , Microextração em Fase Líquida
2.
Small ; 20(27): e2310736, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38282175

RESUMO

2D alloy-based anodes show promise in potassium-ion batteries (PIBs). Nevertheless, their low tap density and huge volume expansion cause insufficient volumetric capacity and cycling stability. Herein, a 3D highly dense encapsulated architecture of 2D-Bi nanosheets (HD-Bi@G) with conducive elastic networks and 3D compact encapsulation structure of 2D nano-sheets are developed. As expected, HD-Bi@G anode exhibits a considerable volumetric capacity of 1032.2 mAh cm-3, stable long-life span with 75% retention after 2000 cycles, superior rate capability of 271.0 mAh g-1 at 104 C, and high areal capacity of 7.94 mAh cm-2 (loading: 24.2 mg cm-2) in PIBs. The superior volumetric and areal performance mechanisms are revealed through systematic kinetic investigations, ex situ characterization techniques, and theorical calculation. The 3D high-conductivity elastic network with dense encapsulated 2D-Bi architecture effectively relieves the volume expansion and pulverization of Bi nanosheets, maintains internal 2D structure with fast kinetics, and overcome sluggish ionic/electronic diffusion obstacle of ultra-thick, dense electrodes. The uniquely encapsulated 2D-nanosheet structure greatly reduces K+ diffusion energy barrier and accelerates K+ diffusion kinetics. These findings validate a feasible approach to fabricate 3D dense encapsulated architectures of 2D-alloy nanosheets with conductive elastic networks, enabling the design of ultra-thick, dense electrodes for high-volumetric-energy-density energy storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA