RESUMO
The nocturnal boundary layer (NBL) significantly influences the dispersion and fate of atmospheric species at night. Subtropical forests are crucial in carbon and water exchange between the biosphere and the atmosphere. However, the NBL characteristics and their impact on atmospheric species over these forests remain unknown. This study conducted vertical measurements of atmospheric species such as O3 and volatile organic compounds (VOCs), along with meteorological variables, over a national forest reserve in Southern China. Results reveal that the NBL height ranged from 180 to 300 m in the summer and from 80 to 160 m in the winter. The vertical distribution of chemical species varied by time and season, with greater concentration gradients observed in the summer. Over 90% of VOCs above the NBL were anthropogenic, while biogenic VOCs were mainly found within the NBL. Higher O3 concentration and VOC product-to-reactant ratios were observed in the residual layer, suggesting enhanced oxidation levels. This unique vertical distribution of atmospheric species at night is driven by factors, such as emission, deposition, turbulence, and atmospheric chemistry, potentially affecting ecosystem functions. Results from this study highlight the importance of incorporating NBL dynamics into atmospheric models to better understand the evolution of chemical species and their ecological effects over forests.
RESUMO
Carcinogenic nitrosamines have been widely studied due to their risk to human health. However, the universality and evolutionary processes of their generation, particularly concerning their secondary sources, remain unclear at present. We demonstrated through laboratory flow tube experiments that corresponding nitrosamines were generated from heterogeneous reactions of nitrous acid (HONO) with five structurally diverse amines commonly found indoors, including diphenylamine (DPhA), dibenzylamine (DBzA), dioctylamine (DOtA), N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), and N-phenyl-1-naphthylamine (PANA). The heterogeneous reaction rate constants of DBzA and DOtA with HONO (â¼70 ppb) were 1.21 × 10-3 and 2.13 × 10-3 min-1 at 30% relative humidity (RH), resulting in a lifetime of 13.8 and 7.8 h. As compared to higher RH (â¼80%), more nitrosamines were produced from the reaction of HONO with surface-sorbed DBzA, DOtA, 6PPD, and PANA at lower RH (30%), with product yields ranging from <0.1% to 0.5%. Furthermore, we observed the formation of nitroso-6PPDs and nitro-6PPDs during room air exposure of 6PPD in a genuine indoor environment, in addition to various other transformation products indicative of reactions of 6PPD with HONO, NOx, and ozone indoors. This study confirmed the universality of the heterogeneous reaction of surface-sorbed amine with HONO as a source of nitrosamines indoors.
Assuntos
Poluição do Ar em Ambientes Fechados , Aminas , Nitrosaminas , Ácido Nitroso , Ácido Nitroso/química , Nitrosaminas/química , Aminas/químicaRESUMO
Ultrafine particles (UFPs) dominate the atmospheric particles in number concentration, impacting human health and climate change. However, existing studies primarily rely on mass-based approaches, leading to a restricted understanding of the number-based and chemically resolved health effects of atmospheric UFPs. In this study, we utilized a high-mass-resolution single-particle aerosol mass spectrometer to investigate the online chemical composition and number size distribution of ultrafine, fine, and coarse particles during the summertime in urban Shenzhen, China. Human respiratory deposition dose assessments of particles with varying chemical compositions were further conducted by a respiratory deposition model. The results showed that during our observation, particles containing elemental carbon (EC) were the dominant components in UFPs (0.05-0.1 µm). Compared to fine and coarse particles, UFPs can deposit more deeply into the respiratory tract with a daily dose of â¼2.08 ± 0.67 billion particles. Among the deposited UFPs, EC-cluster particles constituted â¼85.7% in number fraction, accounting for a daily number dose of â¼1.78 billion particles, which poses a greater impact on human health. Simultaneously, we found discrepancies in the chemically resolved particle depositions among number-, surface area-, and mass-based approaches, emphasizing the importance of an appropriate metric for particle health-risk evaluation.
Assuntos
Poluentes Atmosféricos , Atmosfera , Tamanho da Partícula , Material Particulado , Humanos , Atmosfera/química , Aerossóis , China , Monitoramento AmbientalRESUMO
Black carbon (BC) is a crucial air pollutant that contributes to short-lived climate forcing and adverse health impacts. BC emissions have rapidly declined over the past three decades and it is important to uncover the major factors behind this decline. Herein, the temporal trends in BC emissions were compiled from 146 detailed sources from 1960 to 2019. Results revealed that the major emission sources were residential solid fuel usage, coke production and brick production. Furthermore, 96.9% of the emission reduction from 3.03 Tg in 1995 to 1.02 Tg in 2019 was attributed to these three sources. It was determined that the transition in residential energy/stove usage, phasing-out of beehive coke ovens and brick kiln upgrading were the most important drivers leading to this reduction and will continue to play a key role in future emission mitigation. In addition, this study identified the need to address emissions from coal used in vegetable greenhouses and the commercial sector, and diesel consumption in on/off-road vehicles.
RESUMO
Electricity production is a significant source of air pollution. Various factors, including electricity demand, generation efficiency, energy mix, and end-of-pipe control measures, are responsible for the emission changes during electricity generation. Although electricity production more than doubled from 1990 to 2017, air pollutant emissions showed a moderate increase or decrease, which was attributed to mitigating drivers such as increased clean energy use, improved power generation efficiency, and widespread installation of end-of-pipe control facilities. The absence of these mitigating drivers would have increased CO2, fine particulate matter (PM2.5), black carbon, SO2, and NOx emissions in 2017 by 165 %, 403 %, 1070 %, 614 %, and 274 % than their actual levels, respectively. The improved electricity generation efficiency reduced potential CO2, PM2.5, SO2, and NOx emissions by 30 %, 295 %, 119 %, and 52 % compared to actual emissions, respectively. Meanwhile, the installation of end-of-pipe facilities reduced potential SO2 and PM2.5 emissions by 34.7 and 4.0 Tg, respectively. Considerable differences in emissions among countries were found to be attributable to their differences in electricity demand and the implementation of local mitigating polices.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Dióxido de Carbono , Material Particulado , Centrais Elétricas , Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Poluição do Ar/estatística & dados numéricos , Poluição do Ar/prevenção & controle , Material Particulado/análise , Monitoramento Ambiental , Dióxido de Enxofre/análiseRESUMO
China's strategy to concurrently address climate change and air pollution mitigation is hindered by a lack of comprehensive information on source contributions to health damage and carbon emissions. Here we show notable discrepancies between source contributions to CO2 emissions and fine particulate matter (PM2.5)-related mortality by using adjoint emission sensitivity modeling to attribute premature mortality in 2017 to 53 sector and fuel/process combinations with high spatial resolution. Our findings reveal that monetized PM2.5 health damage exceeds climate impacts in over half of the analyzed subsectors. In addition to coal-fired energy generators and industrial boilers, the combined health and climate costs from energy-intensive processes, diesel-powered vehicles, domestic coal combustion, and agricultural activities exceed 100 billion US dollars, with health-related costs predominating. This research highlights the critical need to integrate the social costs of health damage with climate impacts to develop more balanced mitigation strategies toward these dual goals, particularly during fuel transition and industrial structure upgrading.
RESUMO
China, especially the densely populated North China region, experienced severe haze events in the past decade that concerned the public. Although the most extreme cases have been largely eliminated through recent mitigation measures, severe outdoor air pollution persists and its environmental impact needs to be understood. Severe indoor pollution draws less public attention due to the short visible distance indoors, but its public health impacts cannot be ignored. Herein, we assess the trends and impacts of severe outdoor and indoor air pollution in North China from 2014 to 2021. Our results demonstrate the uneven contribution of severe hazy days to ambient and exposure concentrations of particulate matter with an aerodynamic diameter <2.5 (PM2.5). Although severe indoor pollution contributes to indoor PM2.5 concentrations (23%) to a similar extent as severe haze contributes to ambient PM2.5 concentrations (21%), the former's contribution to premature deaths was significantly higher. Furthermore, residential emissions contributed more in the higher PM2.5 concentration range both indoors and outdoors. Notably, severe haze had greater health impacts on urban residents, while severe indoor pollution was more impactful in rural areas. Our findings suggest that, besides reducing severe haze, mitigating severe indoor pollution is an important aspect of combating air pollution, especially toward improving public health.
Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Monitoramento Ambiental , Material Particulado , China , Material Particulado/análise , Poluentes Atmosféricos/análise , Poluição do Ar , HumanosRESUMO
Environmental pollution is escalating due to rapid global development that often prioritizes human needs over planetary health. Despite global efforts to mitigate legacy pollutants, the continuous introduction of new substances remains a major threat to both people and the planet. In response, global initiatives are focusing on risk assessment and regulation of emerging contaminants, as demonstrated by the ongoing efforts to establish the UN's Intergovernmental Science-Policy Panel on Chemicals, Waste, and Pollution Prevention. This review identifies the sources and impacts of emerging contaminants on planetary health, emphasizing the importance of adopting a One Health approach. Strategies for monitoring and addressing these pollutants are discussed, underscoring the need for robust and socially equitable environmental policies at both regional and international levels. Urgent actions are needed to transition toward sustainable pollution management practices to safeguard our planet for future generations.
RESUMO
The evaporative emissions of anthropogenic volatile organic compounds (AVOCs) are sensitive to ambient temperature. This sensitivity forms an air pollution-meteorology connection that has not been assessed on a regional scale. We parametrized the temperature dependence of evaporative AVOC fluxes in a regional air quality model and evaluated the impacts on surface ozone in the Beijing-Tianjin-Hebei (BTH) area of China during the summer of 2017. The temperature dependency of AVOC emissions drove an enhanced simulated ozone-temperature sensitivity of 1.0 to 1.8 µg m-3 K-1, comparable to the simulated ozone-temperature sensitivity driven by the temperature dependency of biogenic VOC emissions (1.7 to 2.4 µg m-3 K-1). Ozone enhancements driven by temperature-induced AVOC increases were localized to their point of emission and were relatively more important in urban areas than in rural regions. The inclusion of the temperature-dependent AVOC emissions in our model improved the simulated ozone-temperature sensitivities on days of ozone exceedance. Our results demonstrated the importance of temperature-dependent AVOC emissions on surface ozone pollution and its heretofore unrepresented role in air pollution-meteorology interactions.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Compostos Orgânicos Voláteis , Ozônio/análise , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Temperatura , Monitoramento Ambiental/métodos , ChinaRESUMO
Food consumption contributes to the degradation of air quality in regions where food is produced, creating a contrast between the health burden caused by a specific population through its food consumption and that faced by this same population as a consequence of food production activities. Here we explore this inequality within China's food system by linking air-pollution-related health burden from production to consumption, at high levels of spatial and sectorial granularity. We find that low-income groups bear a 70% higher air-pollution-related health burden from food production than from food consumption, while high-income groups benefit from a 29% lower health burden relative to their food consumption. This discrepancy largely stems from a concentration of low-income residents in food production areas, exposed to higher emissions from agriculture. Comprehensive interventions targeting both production and consumption sides can effectively reduce health damages and concurrently mitigate associated inequalities, while singular interventions exhibit limited efficacy.
Assuntos
Poluição do Ar , Renda , Pobreza , Alimentos , AgriculturaRESUMO
Universal access to clean fuels in household use is one explicit indicator of sustainable development while currently still billions of people rely on solid fuels for daily cooking. Despite of the recognized clean transition trend in general, disparities in household energy mix in different activities (e.g. cooking and heating) and historical trends remain to be elucidated. In this study, we revealed the historical changing trend of the disparity in household cooking and heating activities and associated carbon emissions in rural China. The study found that the poor had higher total direct energy consumption but used less modern energy, especially in cooking activities, in which the poor consumed 60 % more energy than the rich. The disparity in modern household energy use decreased over time, but conversely the disparity in total residential energy consumption increased due to the different energy elasticities as income increases. Though per-capita household CO2 and Black Carbon (BC) emissions were decreasing under switching to modern energies, the disparity in household CO2 and BC deepened over time, and the low-income groups emitted â¼ 10 kg CO2 more compared to the high-income population. Relying solely on spontaneous clean cooking transition had limited impacts in reducing disparities in household energy and carbon emissions, whereas improving access to modern energy had substantial potential to reduce energy consumption and carbon emissions and its disparity. Differentiated energy-related policies to promote high-efficiency modern heating energies affordable for the low-income population should be developed to reduce the disparity, and consequently benefit human health and climate change equally.
Assuntos
Poluição do Ar em Ambientes Fechados , Carbono , Humanos , Dióxido de Carbono , Características da Família , Fatores Socioeconômicos , China , População Rural , Culinária , Poluição do Ar em Ambientes Fechados/análiseRESUMO
Ozone pollution is profoundly modulated by meteorological features such as temperature, air pressure, wind, and humidity. While many studies have developed empirical models to elucidate the effects of meteorology on ozone variability, they predominantly focus on local weather conditions, overlooking the influences from high-altitude and broader regional meteorological patterns. Here, we employ convolutional neural networks (CNNs), a technique typically applied to image recognition, to investigate the influence of three-dimensional spatial variations in meteorological fields on the daily, seasonal, and interannual dynamics of ozone in Shenzhen, a major coastal urban center in China. Our optimized CNNs model, covering a 13° × 13° spatial domain, effectively explains over 70% of daily ozone variability, outperforming alternative empirical approaches by 7 to 62%. Model interpretations reveal the crucial roles of 2-m temperature and humidity as primary drivers, contributing 16% and 15% to daily ozone fluctuations, respectively. Regional wind fields account for up to 40% of ozone changes during the episodes. CNNs successfully replicate observed ozone temporal patterns, attributing -5-6 µg·m-3 of interannual ozone variability to weather anomalies. Our interpretable CNNs framework enables quantitative attribution of historical ozone fluctuations to nonlinear meteorological effects across spatiotemporal scales, offering vital process-based insights for managing megacity air quality amidst changing climate regimes.
Assuntos
Redes Neurais de Computação , Ozônio , Ozônio/análise , China , Monitoramento Ambiental , Estações do Ano , Tempo (Meteorologia) , Poluentes AtmosféricosRESUMO
Water-soluble organic molecules (WSOMs) in inhaled PM2.5 can readily translocate from the lungs into the blood circulation, facilitating their distribution to and health effects on distant organs and tissues in the human body. Human serum albumin (HSA), the most abundant protein carrier in the blood, readily binds exogenous substances to form non-covalent adducts and subsequently transports them throughout the circulatory system, thereby indicating their internal exposure. The direct internal exposure of WSOMs in PM2.5 needs to be understood. In this study, the non-covalent HSA-WSOM adductome was developed as a dosimeter to evaluate the internal exposure potential of WSOMs in urban PM2.5. The WSOM composition was acquired from non-target high-resolution mass spectrometry analysis coupled with multiple ionizations. The binding level of HSA-WSOM non-covalent adducts was obtained from surface plasma resonance. Machine learning combined WSOM composition and the binding level of HSA-WSOM non-covalent adducts to screen bindable (also internalizable) WSOMs. The concentration of WSOM ranged from 4 to 13 µg/m3 during our observation period. Of the 17,513 mass spectral features detected, 9,484 contributed to the non-covalent adductome and possessed the internal exposure potential. 102 major contributors accounted for 90.6 % of the HSA-WSOM binding level. The fraction of internalizable WSOMs in PM2.5 varied from 11.9 % to 61.3 %, averaging 26.2 %. WSOMs that have internal exposure potential were primarily lignin-like and lipid-like substances. The HSA-WSOMs non-covalent adductome represents direct internal exposure potential, which can provide crucial insights into the molecular diagnosis of PM2.5 exposure and precise assessments of PM2.5 health effects.
Assuntos
Material Particulado , Água , Humanos , Material Particulado/análise , Albumina Sérica Humana , Espectrometria de Massas , Aerossóis/análiseRESUMO
Crop production is a large source of atmospheric ammonia (NH3), which poses risks to air quality, human health and ecosystems1-5. However, estimating global NH3 emissions from croplands is subject to uncertainties because of data limitations, thereby limiting the accurate identification of mitigation options and efficacy4,5. Here we develop a machine learning model for generating crop-specific and spatially explicit NH3 emission factors globally (5-arcmin resolution) based on a compiled dataset of field observations. We show that global NH3 emissions from rice, wheat and maize fields in 2018 were 4.3 ± 1.0 Tg N yr-1, lower than previous estimates that did not fully consider fertilizer management practices6-9. Furthermore, spatially optimizing fertilizer management, as guided by the machine learning model, has the potential to reduce the NH3 emissions by about 38% (1.6 ± 0.4 Tg N yr-1) without altering total fertilizer nitrogen inputs. Specifically, we estimate potential NH3 emissions reductions of 47% (44-56%) for rice, 27% (24-28%) for maize and 26% (20-28%) for wheat cultivation, respectively. Under future climate change scenarios, we estimate that NH3 emissions could increase by 4.0 ± 2.7% under SSP1-2.6 and 5.5 ± 5.7% under SSP5-8.5 by 2030-2060. However, targeted fertilizer management has the potential to mitigate these increases.
Assuntos
Amônia , Produção Agrícola , Fertilizantes , Amônia/análise , Amônia/metabolismo , Produção Agrícola/métodos , Produção Agrícola/estatística & dados numéricos , Produção Agrícola/tendências , Conjuntos de Dados como Assunto , Ecossistema , Fertilizantes/efeitos adversos , Fertilizantes/análise , Fertilizantes/estatística & dados numéricos , Aprendizado de Máquina , Nitrogênio/análise , Nitrogênio/metabolismo , Oryza/metabolismo , Solo/química , Triticum/metabolismo , Zea mays/metabolismo , Mudança Climática/estatística & dados numéricosRESUMO
Antioxidants are typically seen as agents that mitigate environmental health risks due to their ability to scavenge free radicals. However, our research presents a paradox where these molecules, particularly those within lung fluid, act as prooxidants in the presence of airborne particulate matter (PM2.5), thus enhancing PM2.5 oxidative potential (OP). In our study, we examined a range of antioxidants found in the respiratory system (e.g., vitamin C, glutathione (GSH), and N-acetylcysteine (NAC)), in plasma (vitamin A, vitamin E, and ß-carotene), and in food (tert-butylhydroquinone (TBHQ)). We aimed to explore antioxidants' prooxidant and antioxidant interactions with PM2.5 and the resulting OP and cytotoxicity. We employed OH generation assays and electron paramagnetic resonance assays to assess the pro-oxidative and anti-oxidative effects of antioxidants. Additionally, we assessed cytotoxicity interaction using a Chinese hamster ovary cell cytotoxicity assay. Our findings revealed that, in the presence of PM2.5, all antioxidants except vitamin E significantly increased the PM2.5 OP by generating more OH radicals (OH generation rate: 0.16-24.67 pmol·min-1·m-3). However, it's noteworthy that these generated OH radicals were at least partially neutralized by the antioxidants themselves. Among the pro-oxidative antioxidants, vitamin A, ß-carotene, and TBHQ showed the least ability to quench these radicals, consistent with their observed impact in enhancing PM2.5 cytotoxicity (PM2.5 LC50 reduced to 91.2 %, 88.8 %, and 75.1 % of PM2.5's original level, respectively). Notably, vitamin A and TBHQ-enhanced PM2.5 OP were strongly associated with the presence of metals and organic compounds, particularly with copper (Cu) contributing significantly (35 %) to TBHQ's pro-oxidative effect. Our study underscores the potential health risks associated with the interaction between antioxidants and ambient pollutants.
Assuntos
Poluentes Atmosféricos , Antioxidantes , Hidroquinonas , Cricetinae , Animais , Antioxidantes/metabolismo , beta Caroteno , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Células CHO , Vitamina A , Cricetulus , Material Particulado/toxicidade , Material Particulado/análise , Vitamina E , Glutationa , Estresse OxidativoRESUMO
The chemical industry is a significant source of nonmethane volatile organic compounds (NMVOCs), pivotal precursors to ambient ozone (O3), and secondary organic aerosol (SOA). Despite their importance, precise estimation of these emissions remains challenging, impeding the implementation of NMVOC controls. Here, we present the first comprehensive plant-level assessment of NMVOC emissions from the chemical industry in China, encompassing 3461 plants, 127 products, and 50 NMVOC compounds from 2010 to 2019. Our findings revealed that the chemical industry in China emitted a total of 3105 (interquartile range: 1179-8113) Gg of NMVOCs in 2019, with a few specific products accounting for the majority of the emissions. Generally, plants engaged in chemical fibers production or situated in eastern China pose a greater risk to public health due to their higher formation potentials of O3 and SOA or their proximity to residential areas or both. We demonstrated that targeting these high-risk plants for emission reduction could enhance health benefits by 7-37% per unit of emission reduction on average compared to the current situation. Consequently, this study provides essential insights for developing effective plant-specific NMVOC control strategies within China's chemical industry.
Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Indústria Química , Monitoramento Ambiental , Ozônio/análise , China , Aerossóis/análise , PlantasRESUMO
The iron and steel industry (ISI) is important for socio-economic progress but emits greenhouse gases and air pollutants detrimental to climate and human health. Understanding its historical emission trends and drivers is crucial for future warming and pollution interventions. Here, we offer an exhaustive analysis of global ISI emissions over the past 60 years, forecasting up to 2050. We evaluate emissions of carbon dioxide and conventional and unconventional air pollutants, including heavy metals and polychlorinated dibenzodioxins and dibenzofurans. Based on this newly established inventory, we dissect the determinants of past emission trends and future trajectories. Results show varied trends for different pollutants. Specifically, PM2.5 emissions decreased consistently during the period 1970 to 2000, attributed to adoption of advanced production technologies. Conversely, NOx and SO2 began declining recently due to stringent controls in major contributors such as China, a trend expected to persist. Currently, end-of-pipe abatement technologies are key to PM2.5 reduction, whereas process modifications are central to CO2 mitigation. Projections suggest that by 2050, developing nations (excluding China) will contribute 52-54% of global ISI PM2.5 emissions, a rise from 29% in 2019. Long-term emission curtailment will necessitate the innovation and widespread adoption of new production and abatement technologies in emerging economies worldwide.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluição do Ar/análise , Ferro , Material Particulado/análise , Aço , Poluentes Atmosféricos/análise , ChinaRESUMO
Ever-increasing ambient ozone (O3) pollution in China has been exacerbating cardiopulmonary premature deaths. However, the urban-rural exposure inequity has seldom been explored. Here, we assess population-scale O3 exposure and mortality burdens between 1990 and 2019 based on integrated pollution tracking and epidemiological evidence. We find Chinese population have been suffering from climbing O3 exposure by 4.3 ± 2.8 ppb per decade as a result of rapid urbanization and growing prosperity of socioeconomic activities. Rural residents are broadly exposed to 9.8 ± 4.1 ppb higher ambient O3 than the adjacent urban citizens, and thus urbanization-oriented migration compromises the exposure-associated mortality on total population. Cardiopulmonary excess premature deaths attributable to long-term O3 exposure, 373,500 (95% uncertainty interval [UI]: 240,600-510,900) in 2019, is underestimated in previous studies due to ignorance of cardiovascular causes. Future O3 pollution policy should focus more on rural population who are facing an aggravating threat of mortality risks to ameliorate environmental health injustice.
RESUMO
Emission factors and inventories of black carbon (BC) aerosols are crucial for estimating their adverse atmospheric effect. However, it is imperative to separate BC emissions into char and soot subgroups due to their significantly different physicochemical properties and potential effects. Here, we present a substantial dataset of char and soot emission factors derived from field and laboratory measurements. Based on the latest results of the char-to-soot ratio, we further reconstructed the emission inventories of char and soot for the years 1960-2017 in China. Our findings indicate that char dominates annual BC emissions and its huge historical reduction, which can be attributable to the rapid changes in energy structure, combustion technology and emission standards in recent decades. Our results suggest that further BC emission reductions in both China and the world should focus on char, which mainly derives from lower-temperature combustion and is easier to decrease compared to soot.