Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Adv Sci (Weinh) ; : e2405639, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39206799

RESUMO

Solar desalination is a promising solution for alleviating water scarcity due to its low-cost, environmentally friendly, and off-grid capabilities. However, simultaneous salt rejection and heat localization remain challenging, as the rapid salt convection often results in considerable heat loss. Herein, this challenge is overcome via a facile design: i) isolating high-temperature and high-salt zones by rationally designing morning glory-shaped wick structures and ii) bridging high-salt zones and bulk water with low-tortuosity macrochannels across low-temperature surfaces. The salinity gradient in the macrochannels passively triggers convective flow, facilitating the rapid transfer of salt ions from the high-salt zone to the bulk water. Meanwhile, the macrochannels are spatially isolated from the high-temperature zone, preventing heat loss during salt convection and thereby achieving a high evaporation rate (≈3 kg m-2 h-1) and superior salt rejection even in highly concentrated real seawater. This work provides new insights into salt rejection strategies and advances practical applications for sustainable seawater desalination.

2.
Sci Adv ; 10(9): eadk5047, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416835

RESUMO

Modern synthetic technology generally invokes high temperatures to control the hydration level of ceramics, but even the state-of-the-art technology can still only control the overall hydration content. Magically, natural organisms can produce bioceramics with tailorable hydration profiles and crystallization traits solely from amorphous precursors under physiological conditions. To mimic the biomineralization tactic, here, we report pressure-controlled hydration and crystallization in fabricated ceramics, solely from the amorphous precursors of purely inorganic gels (PIGs) synthesized from biocompatible aqueous solutions with most common ions in organisms (Ca2+, Mg2+, CO32-, and PO43-). Transparent ceramic tablets are directly produced by compressing the PIGs under mild pressure, while the pressure regulates the hydration characteristics and the subsequent crystallization behaviors of the synthesized ceramics. Among the various hydration species, the moderately bound and ordered water appears to be a key in regulating the crystallization rate. This nature-inspired study offers deeper insights into the magic behind biomineralization.

3.
J Stroke Cerebrovasc Dis ; 33(4): 107634, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342274

RESUMO

BACKGROUND: Intracranial aneurysm (IA) is a common cerebrovascular disease and the leading cause of spontaneous subarachnoid hemorrhage. Recent evidence suggests that gut microbiota is involved in the pathophysiological process of IA through the gut-brain axis. However, the role of gut inflammation in the development of IA has yet to be clarified. Our study aimed to investigate whether fecal calprotectin (FC) level, a sensitive marker of gut inflammation, is correlated with the development of IA and the prognosis of patients with ruptured IA (RIA). METHODS: 182 patients were collected from January 2022 to January 2023, including 151 patients with IA and 31 healthy individuals. 151 IA patients included 109 patients with unruptured IA (UIA) and 42 patients with RIA. The FC level was measured by enzyme-linked immunosorbent assay. Other detailed information was obtained from an electronic medical record system. RESULTS: Compared with healthy controls, the FC levels in patients with IA were increased (P < 0.0001). Patients with RIA had significantly higher FC levels than UIA patients (P < 0.0001). Moreover, the FC level in RIA patients with unfavorable outcomes was higher than in RIA patients with favorable outcomes. Logistic regression analysis showed that the elevated FC level was an independent risk factor for a 3-month poor prognosis in patients with RIA (OR=1.005, 95% CI = 1.000 -1.009, P = 0.044). CONCLUSION: Fecal calprotectin level is significantly elevated in IA patients, especially those with RIA. FC is a novel biomarker of 3-month poor outcomes in RIA patients.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Hemorragia Subaracnóidea , Humanos , Aneurisma Intracraniano/complicações , Aneurisma Intracraniano/diagnóstico , Hemorragia Subaracnóidea/etiologia , Aneurisma Roto/etiologia , Biomarcadores , Inflamação/complicações
4.
Nat Commun ; 14(1): 5389, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666814

RESUMO

Low-dimensional nanocrystals with controllable defects or strain modifications are newly emerging active electrocatalysts for hydrogen-energy conversion and utilization; however, a crucial challenge remains in insufficient stability due to spontaneous structural degradation and strain relaxation. Here we report a Turing structuring strategy to activate and stabilize superthin metal nanosheets by incorporating high-density nanotwins. Turing configuration, realized by constrained orientation attachment of nanograins, yields intrinsically stable nanotwin network and straining effects, which synergistically reduce the energy barrier of water dissociation and optimize the hydrogen adsorption free energy for hydrogen evolution reaction. Turing PtNiNb nanocatalyst achieves 23.5 and 3.1 times increase in mass activity and stability index, respectively, compared against commercial 20% Pt/C. The Turing PtNiNb-based anion-exchange-membrane water electrolyser with a low Pt mass loading of 0.05 mg cm-2 demonstrates at least 500 h stability at 1000 mA cm-2, disclosing the stable catalysis. Besides, this new paradigm can be extended to Ir/Pd/Ag-based nanocatalysts, illustrating the universality of Turing-type catalysts.

5.
Nano Lett ; 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36190454

RESUMO

Plasmon-mediated chemical reactions have attracted intensive research interest as a means of achieving desirable reaction yields and selectivity. The energetic charge carriers and elevated local temperature induced by the nonradiative decay of surface plasmons are thought to be responsible for improving reaction outcomes. This study reports that the plasmoelectric potential is another key contributor in plasmon-mediated electrochemistry. Additionally, we disclose a convenient and reliable method for quantifying the specific contributions of the plasmoelectric potential, hot electrons, and photothermal heating to the electroreduction of oxygen at the plasmonic Ag electrode, revealing that the plasmoelectric potential is the dominating nonthermal factor under short-wavelength illumination and moderate electrode bias. This work elucidates novel mechanistic understandings of plasmon-mediated electrochemistry, facilitating high-performance plasmonic electrocatalyst design optimization.

6.
Commun Biol ; 5(1): 952, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097156

RESUMO

Conservation of natural resources is a vital and challenging task. Numerous animal genetic resources have been effectively conserved worldwide. However, the effectiveness of conservation programmes and the variation information of species have rarely been evaluated. Here, we performed whole-genome and whole-genome bisulfite sequencing of 90 Chinese indigenous chickens, which belonged to the Tibetan, Wenchang and Bian chicken breeds, and have been conserved under different conservation programmes. We observed that low genetic diversity and high DNA methylation variation occurs during ex situ in vivo conservation, while higher genetic diversity and differentiation occurs during in situ conservation. Further analyses revealed that most DNA methylation signatures are unique within ex situ in vivo conservation. Moreover, a high proportion of differentially methylated regions is found in genomic selection regions, suggesting a link between the effects of genomic variation and DNA methylation. Altogether our findings provide valuable information about genetic and DNA methylation variations during different conservation programmes, and hold practical relevance for species conservation.


Assuntos
Galinhas , Genoma , Animais , Galinhas/genética , China , Metilação de DNA
7.
Oxid Med Cell Longev ; 2022: 9069825, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35855863

RESUMO

Ferroptosis is a regulated cell death that characterizes the lethal lipid peroxidation and iron overload, which may contribute to early brain injury (EBI) pathogenesis after subarachnoid hemorrhage (SAH). Although Sirtuin 1 (SIRT1), a class III histone deacetylase, has been proved to have endogenous neuroprotective effects on the EBI following SAH, the role of SIRT1 in ferroptosis has not been studied. Hence, we designed the current study to determine the role of ferroptosis in the EBI and explore the correlation between SIRT1 and ferroptosis after SAH. The pathways of ferroptosis were examined after experimental SAH in vivo (prechiasmatic cistern injection mouse model) and in HT-22 cells stimulated by oxyhemoglobin (oxyHb) in vitro. Then, ferrostatin-1 (Fer-1) was used further to determine the role of ferroptosis in EBI. Finally, we explored the correlation between SIRT1 and ferroptosis via regulating the expression of SIRT1 by resveratrol (RSV) and selisistat (SEL). Our results showed that ferroptosis was involved in the pathogenesis of EBI after SAH through multiple pathways, including acyl-CoA synthetase long-chain family member 4 (ACSL4) activation, iron metabolism disturbance, and the downregulation of glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1). Inhibition of ferroptosis by Fer-1 significantly alleviated oxidative stress-mediated brain injury. SIRT1 activation could suppress SAH-induced ferroptosis by upregulating the expression of GPX4 and FSP1. Therefore, ferroptosis could be a potential therapeutic target for SAH, and SIRT1 activation is a promising method to inhibit ferroptosis.


Assuntos
Lesões Encefálicas , Ferroptose , Sirtuína 1 , Hemorragia Subaracnóidea , Animais , Lesões Encefálicas/metabolismo , Camundongos , Sirtuína 1/metabolismo , Hemorragia Subaracnóidea/metabolismo
8.
ACS Sens ; 7(5): 1381-1389, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35584047

RESUMO

Sensing of hazardous metals is urgent in many areas (e.g., water pollution and meat products) as heavy metals threaten people's health. Laser-induced breakdown spectroscopy (LIBS), as a rapid, in situ, and multielemental analytical technique, has been widely utilized in rapid hazardous heavy metal sensing. However, loose and water-containing samples (e.g., meat, plant, and soil) are hard to analyze by LIBS directly, and heavy metal depth profiling for bulk samples remains suspenseful. Here, inspired by the Needle, the sword of Arya Stark in Game of Thrones, we propose an insertable, scabbarded, and nanoetched silver (NE-Ag) needle sensor for rapid hazardous element sensing and depth profiling. The NE-Ag needle sensor features a micro-nanostructure surface for inserting into the bulk sample and absorbing hazardous analytes. For accurate elemental depth profiling, we design a stainless-steel scabbard to wrap and protect the NE-Ag needle from pollution (unexpected contaminant absorption) during the needle insertion and extraction process. The results for cadmium (Cd) show that the relative standard deviation equals to 6.7% and the limit of detection reaches 0.8 mg/L (ppm). Furthermore, the correlations (Pearson correlation coefficient) for Cd and chromium (Cr) depth profiling results are no less than 0.96. Furthermore, the total testing time could be less than 1 h. All in all, the insertable and scabbarded NE-Ag needle senor has high potential in rapid hazardous heavy metal depth profiling in different industries.


Assuntos
Metais Pesados , Prata , Cádmio , Humanos , Lasers , Prata/química , Análise Espectral/métodos
9.
Front Genet ; 13: 828884, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35419032

RESUMO

Age at first egg (AFE) and egg number (EN) are economically important traits related to egg production, as they directly influence the benefits of the poultry industry, but the molecular genetic research that affects those traits in laying ducks is still sparse. Our objective was to identify the genomic regions and candidate genes associated with AFE, egg production at 43 weeks (EP43w), and egg production at 66 weeks (EP66w) in a Shaoxing duck population using genome-wide association studies (GWASs) and haplotype-sharing analysis. Single-nucleotide polymorphism (SNP)-based genetic parameter estimates showed that the heritability was 0.15, 0.20, and 0.22 for AFE, EP43w, and EP66w, respectively. Subsequently, three univariate GWASs for AFE, EP43w, and EP66w were carried out independently. Twenty-four SNPs located on chromosome 25 within a 0.01-Mb region that spans from 4.511 to 4.521 Mb were associated with AFE. There are two CIs that affect EP43w, i.e., twenty-five SNPs were in strong linkage disequilibrium region spanning from 3.186 to 3.247 Mb on chromosome 25, a region spanning from 4.442 to 4.446 Mb on chromosome 25, and two interesting genes, ACAD8 and THYN1, that may affect EP43w in laying ducks. There are also two CIs that affect EP66w, i.e., a 2.412-Mb region that spans from 127.497 to 129.910 Mb on chromosome 2 and a 0.355-Mb region that spans from 4.481 to 4.837 Mb on chromosome 29, and CA2 and GAMT may be the putative candidate genes. Our study also found some haplotypes significantly associated with these three traits based on haplotype-sharing analysis. Overall, this study was the first publication of GWAS on egg production in laying ducks, and our findings will be helpful to provide some candidate genes and haplotypes to improve egg production performance based on breeding in laying duck. Additionally, we learned from a method called bootstrap test to verify the reliability of a GWAS with small experimental samples that users can access at https://github.com/xuwenwu24/Bootstrap-test.

10.
Poult Sci ; 101(3): 101641, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35007929

RESUMO

The abuse of antibiotics for agricultural purposes has been under scrutiny. Therefore, there is an urgent need to find antibiotic substitutes in animal production. The effects of chlorogenic acid, ß-D-Glucan, astragalus flavone, CpG-DNA, and chicken IgG on spleen antioxidant capacity, apoptosis, and the immune response in Shaoxing ducklings were investigated in this study. The ducklings treated with ß-D-Glucan, astragalus flavone, CpG-DNA, and chicken IgG showed significant reduction in catalase and superoxide dismutase activities. The five immunopotentiators facilitated caspase 3 expression and reduced Bcl2 expression in the spleen. Compared to the control group, the protein level of COX2 was significantly upregulated in the chlorogenic acid, CpG-DNA, and chicken IgG groups. The protein level of iNOS expression was significantly improved in all immunopotentiator groups, except for the astragalus flavone group. The five immunopotentiators induced IL-1ß, IFN-α, IFN-ß, TNF-α, RIG-I, TLR3, and TLR7 gene expression. In summary, chlorogenic acid, ß-D-Glucan, astragalus flavone, CpG-DNA, and chicken IgG, as immunopotentiators, improved the innate immune response in the ducklings, which not only provides a new avenue for the development of efficient approaches to prevent pathogen infections, but also offers an alternative to antibiotics in animal production.


Assuntos
Adjuvantes Imunológicos , Antioxidantes , Adjuvantes Imunológicos/farmacologia , Animais , Antioxidantes/metabolismo , Apoptose , Galinhas/metabolismo , Patos/metabolismo , Imunidade Inata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA