Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Mol Diagn ; 26(5): 337-348, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38360210

RESUMO

Several in silico annotation-based methods have been developed to prioritize variants in exome sequencing analysis. This study introduced a novel metric Significance Associated with Phenotypes (SAP) score, which generates a statistical score by comparing an individual's observed phenotypes against existing gene-phenotype associations. To evaluate the SAP score, a retrospective analysis was performed on 219 exomes. Among them, 82 family-based and 35 singleton exomes had at least one disease-causing variant that explained the patient's clinical features. SAP scores were calculated, and the rank of the disease-causing variant was compared with a known method, Exomiser. Using the SAP score, the known causative variant was ranked in the top 10 retained variants for 94% (77 of 82) of the family-based exomes and in first place for 73% of these cases. For singleton exomes, the SAP score analysis ranked the known pathogenic variants within the top 10 for 80% (28 of 35) of cases. The SAP score, which is independent of detected variants, demonstrates comparable performance with Exomiser, which considers both phenotype and variant-level evidence simultaneously. Among 102 cases with negative results or variants of uncertain significance, SAP score analysis revealed two cases with a potential new diagnosis based on rank. The SAP score, a phenotypic quantitative metric, can be used in conjunction with standard variant filtration and annotation to enhance variant prioritization in exome analysis.


Assuntos
Bases de Dados Genéticas , Testes Genéticos , Humanos , Sequenciamento do Exoma , Estudos Retrospectivos , Fenótipo
2.
Curr Protoc ; 4(1): e955, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284225

RESUMO

The international Mitochondrial Disease Sequence Data Resource Consortium (MSeqDR) Quick-Mitome (QM) is a web-based platform enabling automated variant interpretation of whole-exome sequencing (WES) datasets for the genetic diagnosis of primary mitochondrial diseases (PMD). Designed specifically to address the unique dual genome nature of PMD etiologies, QM includes features for both nuclear and mitochondrial DNA (mtDNA) genome analysis. QM requires VCF variant lists, HPO ID clinical phenotypes, and pedigree files for multiple-sample VCF inputs. QM maps phenotypes to HPO terms before analysis. QM analysis requires 2 to 20 min for 100,000 variants on an 8-vCPU AWS server using Exomiser's "PASS_ONLY" mode for nuclear variants. QM ranks variants based on allele frequency, phenotype-gene association, functional impact, and inheritance mode. Variants are further annotated with multiple data sources such as OMIM, ClinVar, dbNSFP, gnoMAD, MITOMAP, and MSeqDR. In addition to standard Exomiser results, QM generates an Analysis Report and QM Integrated Report with add-on mtDNA-specific analyses, including haplogroup prediction with Phy-Mer, heteroplasmy calculation, and mvTool annotations. We developed the Mitochondrial Disease Variant (MDV) classifier using XGBoost to predict variant pathogenicity for PMD. The MDV classifier was trained on >120 features and performance benchmarking showed that it correctly classified >98% of nuclear gene variants as being pathogenic or benign, and predicted PMD-causing variants with 94% precision. The MSeqDR QM server is an open-access resource for phenotype-driven dual-genome analyses for PMD diagnosis by the global mitochondrial disease community. It is publicly available for non-commercial, non-clinical research use at https://mseqdr.org/quickmitome.php. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Standardizing clinical phenotypes into human phenotype ontology (HPO) terms as the phenotype input for Quick-Mitome (QM) Basic Protocol 2: Prepare the pedigree input for multiple-sample VCF Basic Protocol 3: Quick-Mitome (QM) analysis Basic Protocol 4: Reviewing and understanding the QM Integrated Report and Analysis Report.


Assuntos
Doenças Mitocondriais , Humanos , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Fenótipo , DNA Mitocondrial/genética , Mitocôndrias , Aprendizado de Máquina
3.
Nat Med ; 29(5): 1243-1252, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37188781

RESUMO

We characterized the world's second case with ascertained extreme resilience to autosomal dominant Alzheimer's disease (ADAD). Side-by-side comparisons of this male case and the previously reported female case with ADAD homozygote for the APOE3 Christchurch (APOECh) variant allowed us to discern common features. The male remained cognitively intact until 67 years of age despite carrying a PSEN1-E280A mutation. Like the APOECh carrier, he had extremely elevated amyloid plaque burden and limited entorhinal Tau tangle burden. He did not carry the APOECh variant but was heterozygous for a rare variant in RELN (H3447R, termed COLBOS after the Colombia-Boston biomarker research study), a ligand that like apolipoprotein E binds to the VLDLr and APOEr2 receptors. RELN-COLBOS is a gain-of-function variant showing stronger ability to activate its canonical protein target Dab1 and reduce human Tau phosphorylation in a knockin mouse. A genetic variant in a case protected from ADAD suggests a role for RELN signaling in resilience to dementia.


Assuntos
Doença de Alzheimer , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Heterozigoto , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais
4.
Ann Neurol ; 94(4): 696-712, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37255483

RESUMO

OBJECTIVE: Primary mitochondrial diseases (PMDs) are heterogeneous disorders caused by inherited mitochondrial dysfunction. Classically defined neuropathologically as subacute necrotizing encephalomyelopathy, Leigh syndrome spectrum (LSS) is the most frequent manifestation of PMD in children, but may also present in adults. A major challenge for accurate diagnosis of LSS in the genomic medicine era is establishing gene-disease relationships (GDRs) for this syndrome with >100 monogenic causes across both nuclear and mitochondrial genomes. METHODS: The Clinical Genome Resource (ClinGen) Mitochondrial Disease Gene Curation Expert Panel (GCEP), comprising 40 international PMD experts, met monthly for 4 years to review GDRs for LSS. The GCEP standardized gene curation for LSS by refining the phenotypic definition, modifying the ClinGen Gene-Disease Clinical Validity Curation Framework to improve interpretation for LSS, and establishing a scoring rubric for LSS. RESULTS: The GDR with LSS across the nuclear and mitochondrial genomes was classified as definitive for 31 of 114 GDRs curated (27%), moderate for 38 (33%), limited for 43 (38%), and disputed for 2 (2%). Ninety genes were associated with autosomal recessive inheritance, 16 were maternally inherited, 5 were autosomal dominant, and 3 were X-linked. INTERPRETATION: GDRs for LSS were established for genes across both nuclear and mitochondrial genomes. Establishing these GDRs will allow accurate variant interpretation, expedite genetic diagnosis of LSS, and facilitate precision medicine, multisystem organ surveillance, recurrence risk counseling, reproductive choice, natural history studies, and determination of eligibility for interventional clinical trials. ANN NEUROL 2023;94:696-712.


Assuntos
Doença de Leigh , Doenças Mitocondriais , Criança , Humanos , Doença de Leigh/diagnóstico , Doença de Leigh/genética , Mitocôndrias
5.
J Vis Exp ; (175)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34570090

RESUMO

There is significant potential clinical utility for the application of a liquid biopsy platform for retinoblastoma, given that direct tumor biopsy is prohibited in these patients. The aqueous humor (AH) forms in a separate compartment from the tumor but is enclosed within the same ocular space. Thus, it is an enriched source of eye-specific tumoral genomic information that can be used as a liquid biopsy or surrogate to tumor biopsy for this disease. This manuscript details a methodology for safely extracting the AH from retinoblastoma eyes via clear corneal paracentesis. Additionally, the steps for genomic analysis, including cell-free DNA isolation and purification, next-generation sequencing, somatic copy number alteration (SCNA) analysis, RB1 single nucleotide variant (SNV) mutation identification, and tumor fraction estimation are presented. The pre-analytical, analytical, and early clinical validity of the AH liquid biopsy platform have been evaluated; however, it is not without limitations. These are largely a consequence of the quantity of cell-free DNA that is required for certain steps of the assay. Compared to other blood-based liquid biopsy platforms currently under investigation for retinoblastoma, an AH-based platform is limited by the volume of biofluid (and thus the quantity of DNA) that can be extracted from the eye; the benefit is that AH is eye-specific. The platform discussed here is unique in that it detects circulating tumor DNA in the AH via two mechanisms (SCNAs and RB1 SNVs), yielding a higher sensitivity for identifying tumoral genomic information. The AH liquid biopsy has the potential for direct clinical application to precision oncology for retinoblastoma patients, with particular importance for patients with bilateral disease as the AH is specific to the tumors in each eye. There is ongoing research with applications of this platform to patients with other ocular tumors as well.


Assuntos
Neoplasias da Retina , Retinoblastoma , Humor Aquoso , Genômica , Humanos , Biópsia Líquida , Paracentese , Medicina de Precisão , Neoplasias da Retina/genética , Retinoblastoma/genética
6.
NPJ Precis Oncol ; 5(1): 73, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34316014

RESUMO

Germline alterations in the RB1 tumor suppressor gene predispose patients to develop retinoblastoma (RB) in both eyes. While similar treatment is given for each eye, there is often a variable therapeutic response between the eyes. Herein, we use the aqueous humor (AH) liquid biopsy to evaluate the cell-free tumor DNA (ctDNA) from each eye in a patient with bilateral RB. Despite the same predisposing germline RB1 mutation, AH analysis identified a different somatic RB1 mutation as well as separate and distinct chromosomal alterations in each eye. The longitudinal alterations in tumor fraction (TFx) corresponded to therapeutic responses in each eye. This case demonstrates that bilateral RB tumors develop separate genomic alterations, which may play a role in tumorigenesis and prognosis for eye salvage. Identifying these inter-eye differences without the need for enucleated tumor tissue may help direct active management of RB, with particular usefulness in bilateral cases.

7.
Open Forum Infect Dis ; 8(6): ofaa551, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34095334

RESUMO

BACKGROUND: The full spectrum of the disease phenotype and viral genotype of coronavirus disease 2019 (COVID-19) have yet to be thoroughly explored in children. Here, we analyze the relationships between viral genetic variants and clinical characteristics in children. METHODS: Whole-genome sequencing was performed on respiratory specimens collected for all SARS-CoV-2-positive children (n = 141) between March 13 and June 16, 2020. Viral genetic variations across the SARS-CoV-2 genome were identified and investigated to evaluate genomic correlates of disease severity. RESULTS: Higher viral load was detected in symptomatic patients (P = .0007) and in children <5 years old (P = .0004). Genomic analysis revealed a mean pairwise difference of 10.8 single nucleotide variants (SNVs), and the majority (55.4%) of SNVs led to an amino acid change in the viral proteins. The D614G mutation in the spike protein was present in 99.3% of the isolates. The calculated viral mutational rate of 22.2 substitutions/year contrasts the 13.5 substitutions/year observed in California isolates without the D614G mutation. Phylogenetic clade 20C was associated with severe cases of COVID-19 (odds ratio, 6.95; P = .0467). Epidemiological investigation revealed major representation of 3 of 5 major Nextstrain clades (20A, 20B, and 20C) consistent with multiple introductions of SARS-CoV-2 in Southern California. CONCLUSIONS: Genomic evaluation demonstrated greater than expected genetic diversity, presence of the D614G mutation, increased mutation rate, and evidence of multiple introductions of SARS-CoV-2 into Southern California. Our findings suggest a possible association of phylogenetic clade 20C with severe disease, but small sample size precludes a definitive conclusion. Our study warrants larger and multi-institutional genomic evaluation and has implications for infection control practices.

8.
Emerg Microbes Infect ; 10(1): 1293-1299, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34125658

RESUMO

The SARS-CoV-2 B.1.1.7 lineage is highly infectious and as of April 2021 accounted for 92% of COVID-19 cases in Europe and 59% of COVID-19 cases in the U.S. It is defined by the N501Y mutation in the receptor-binding domain (RBD) of the Spike (S) protein, and a few other mutations. These include two mutations in the N terminal domain (NTD) of the S protein, HV69-70del and Y144del (also known as Y145del due to the presence of tyrosine at both positions). We recently identified several emerging SARS-CoV-2 variants of concerns, characterized by Membrane (M) protein mutations, including I82T and V70L. We now identify a sub-lineage of B.1.1.7 that emerged through sequential acquisitions of M:V70L in November 2020 followed by a novel S:D178H mutation first observed in early February 2021. The percentage of B.1.1.7 isolates in the US that belong to this sub-lineage increased from 0.15% in February 2021 to 1.8% in April 2021. To date, this sub-lineage appears to be U.S.-specific with reported cases in 31 states, including Hawaii. As of April 2021, it constituted 36.8% of all B.1.1.7 isolates in Washington. Phylogenetic analysis and transmission inference with Nextstrain suggest this sub-lineage likely originated in either California or Washington. Structural analysis revealed that the S:D178H mutation is in the NTD of the S protein and close to two other signature mutations of B.1.1.7, HV69-70del and Y144del. It is surface exposed and may alter NTD tertiary configuration or accessibility, and thus has the potential to affect neutralization by NTD directed antibodies.


Assuntos
Mutação , SARS-CoV-2/classificação , Glicoproteína da Espícula de Coronavírus/genética , Proteínas da Matriz Viral/genética , Sequenciamento Completo do Genoma/métodos , Sítios de Ligação , Humanos , Modelos Moleculares , Filogenia , Domínios Proteicos , Estrutura Terciária de Proteína , SARS-CoV-2/genética , Análise de Sequência de RNA , Glicoproteína da Espícula de Coronavírus/química , Estados Unidos
9.
Emerg Microbes Infect ; 10(1): 885-893, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33896413

RESUMO

Mutations in the SARS-CoV-2 Membrane (M) gene are relatively uncommon. The M gene encodes the most abundant viral structural protein, and is implicated in multiple viral functions, including initial attachment to the host cell via heparin sulphate proteoglycan, viral protein assembly in conjunction with the N and E genes, and enhanced glucose transport. We have identified a recent spike in the frequency of reported SARS-CoV-2 genomes carrying M gene mutations. This is associated with emergence of a new sub-B.1 clade, B.1.I82T, defined by the previously unreported M:I82T mutation within TM3, the third of three membrane spanning helices implicated in glucose transport. The frequency of this mutation increased in the USA from 0.014% in October 2020 to 1.62% in February 2021, a 116-fold change. While constituting 0.7% of the isolates overall, M:I82T sub-B.1 lineage accounted for 14.4% of B.1 lineage isolates in February 2021, similar to the rapid initial increase previously seen with the B.1.1.7 and B.1.429 lineages, which quickly became the dominant lineages in Europe and California over a period of several months. A similar increase in incidence was also noted in another related mutation, V70L, also within the TM2 transmembrane helix. These M mutations are associated with younger patient age (4.6 to 6.3 years). The rapid emergence of this B.1.I82T clade, recently named Pangolin B.1.575 lineage, suggests that this M gene mutation is more biologically fit, perhaps related to glucose uptake during viral replication, and should be included in ongoing genomic surveillance efforts and warrants further evaluation for potentially increased pathogenic and therapeutic implications.


Assuntos
COVID-19/virologia , Mutação , SARS-CoV-2/genética , Proteínas da Matriz Viral/genética , Adulto , Linhagem da Célula , Criança , Pré-Escolar , Humanos , Filogenia
10.
EBioMedicine ; 67: 103355, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33915337

RESUMO

BACKGROUND: There is increasing concern that persistent infection of SARS-CoV-2 within immunocompromised hosts could serve as a reservoir for mutation accumulation and subsequent emergence of novel strains with the potential to evade immune responses. METHODS: We describe three patients with acute lymphoblastic leukemia who were persistently positive for SARS-CoV-2 by real-time polymerase chain reaction. Viral viability from longitudinally-collected specimens was assessed. Whole-genome sequencing and serological studies were performed to measure viral evolution and evidence of immune escape. FINDINGS: We found compelling evidence of ongoing replication and infectivity for up to 162 days from initial positive by subgenomic RNA, single-stranded RNA, and viral culture analysis. Our results reveal a broad spectrum of infectivity, host immune responses, and accumulation of mutations, some with the potential for immune escape. INTERPRETATION: Our results highlight the potential need to reassess infection control precautions in the management and care of immunocompromised patients. Routine surveillance of mutations and evaluation of their potential impact on viral transmission and immune escape should be considered.


Assuntos
COVID-19/imunologia , Evasão da Resposta Imune , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/virologia , SARS-CoV-2/genética , COVID-19/virologia , Pré-Escolar , Evolução Molecular , Feminino , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunidade Humoral , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , Análise de Sequência de RNA , Sequenciamento Completo do Genoma , Adulto Jovem
11.
Cancers (Basel) ; 13(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805776

RESUMO

Because direct tumor biopsy is prohibited for retinoblastoma (RB), eye-specific molecular biomarkers are not used in clinical practice for RB. Recently, we demonstrated that the aqueous humor (AH) is a rich liquid biopsy source of cell-free tumor DNA. Herein, we detail clinically-relevant molecular biomarkers from the first year of prospective validation data. Seven eyes from 6 RB patients who had AH sampled at diagnosis and throughout therapy with ≥12 months of follow-up were included. Cell-free DNA (cfDNA) from each sample was isolated and sequenced to assess genome-wide somatic copy number alterations (SCNAs), followed by targeted resequencing for pathogenic variants using a RB1 and MYCN custom hybridization panel. Tumoral genomic information was detected in 100% of diagnostic AH samples. Of the seven diagnostic AH samples, 5/7 were positive for RB SCNAs. Mutational analysis identified RB1 variants in 5/7 AH samples, including the 2 samples in which no SCNAs were detected. Two eyes failed therapy and required enucleation; both had poor prognostic biomarkers (chromosome 6p gain or MYCN amplification) present in the AH at the time of diagnosis. In the context of previously established pre-analytical, analytical, and clinical validity, this provides evidence for larger, prospective studies to further establish the clinical utility of the AH liquid biopsy and its applications to precision oncology for RB.

12.
J Glob Antimicrob Resist ; 25: 60-65, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33662645

RESUMO

OBJECTIVES: Pseudomonas aeruginosa is a leading cause of opportunistic infections worldwide, particularly in healthcare settings, and frequently demonstrates resistance to commonly prescribed antimicrobials. Carbapenem resistance is prevalent worldwide, however there are currently limited data available from Haiti. The aim of this study was to characterise and document this phenotype in Port-au-Prince, Haiti, to further inform the need for appropriate infection control, empirical treatment guidelines and laboratory screening measures, both in Haiti and globally. METHODS: A total of 50 P. aeruginosa isolates were characterised by multilocus sequence typing (MLST) and antimicrobial susceptibility testing, of which 8 isolates were also subjected to whole-genome sequencing (WGS) to identify potential genetic correlations of phenotypic resistance. RESULTS: By MLST, 23 sequence types (STs) were identified, including 13 new STs. Nineteen isolates belonged to a single, previously characterised ST (ST654), all of which demonstrated a multidrug-resistant phenotype, including resistance to meropenem, imipenem and ceftazidime; two isolates were also resistant to colistin. WGS revealed the presence of genes encoding several previously characterised resistance determinants in ST654; notably ACC(6')-Ib3-cr and GES-7. Metallo-ß-lactamase genes (blaVIM-5) were also detected in three isolates. CONCLUSION: These findings confirm that drug-resistant clones of P. aeruginosa are present in Haiti, supporting the need for appropriate screening and control measures and confirming that drug-resistant micro-organisms pose a global threat. Further investigations are required to guide appropriate antimicrobial prescribing in this region.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Atenção à Saúde , Haiti , Humanos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Pseudomonas aeruginosa/genética
13.
medRxiv ; 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33688673

RESUMO

Background: There is increasing concern that persistent infection of SARS-CoV-2 within immunocompromised hosts could serve as a reservoir for mutation accumulation and subsequent emergence of novel strains with the potential to evade immune responses. Methods: We describe three patients with acute lymphoblastic leukemia who were persistently positive for SARS-CoV-2 by real-time polymerase chain reaction. Viral viability from longitudinally-collected specimens was assessed. Whole-genome sequencing and serological studies were performed to measure viral evolution and evidence of immune escape. Findings: We found compelling evidence of ongoing replication and infectivity for up to 162 days from initial positive by subgenomic RNA, single-stranded RNA, and viral culture analysis. Our results reveal a broad spectrum of infectivity, host immune responses, and accumulation of mutations, some with the potential for immune escape. Interpretation: Our results highlight the need to reassess infection control precautions in the management and care of immunocompromised patients. Routine surveillance of mutations and evaluation of their potential impact on viral transmission and immune escape should be considered. Funding: The work was partially funded by The Saban Research Institute at Children's Hospital Los Angeles intramural support for COVID-19 Directed Research (X.G. and J.D.B.), the Johns Hopkins Center of Excellence in Influenza Research and Surveillance HHSN272201400007C (A.P.), NIH/NIAID R01AI127877 (S.D.B.), NIH/NIAID R01AI130398 (S.D.B.), NIH 1U54CA260517 (S.D.B.), an endowment to S.D.B. from the Crown Family Foundation, an Early Postdoc.Mobility Fellowship Stipend to O.F.W. from the Swiss National Science Foundation (SNSF), and a Coulter COVID-19 Rapid Response Award to S.D.B. L.G. is a SHARE Research Fellow in Pediatric Hematology-Oncology.

14.
medRxiv ; 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33619507

RESUMO

Background: In the US, community circulation of the SARS-CoV-2 virus likely began in February 2020 after mostly travel-related cases. Children's Hospital of Philadelphia began testing on 3/9/2020 for pediatric and adult patients, and for all admitted patients on 4/1/2020, allowing an early glimpse into the local molecular epidemiology of the virus. Methods: We obtained 169 SARS-CoV-2 samples (83 from patients <21 years old) from March through May and produced whole genome sequences. We used genotyping tools to track variants over time and to test for possible genotype associated clinical presentations and outcomes in children. Results: Our analysis uncovered 13 major lineages that changed in relative abundance as cases peaked in mid-April in Philadelphia. We detected at least 6 introductions of distinct viral variants into the population. As a group, children had more diverse virus genotypes than the adults tested. No strong differences in clinical variables were associated with genotypes. Conclusions: Whole genome analysis revealed unexpected diversity, and distinct circulating viral variants within the initial peak of cases in Philadelphia. Most introductions appeared to be local from nearby states. Although limited by sample size, we found no evidence that different genotypes had different clinical impacts in children in this study.

15.
Ann Palliat Med ; 10(2): 2062-2071, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33615812

RESUMO

BACKGROUND: To retrospectively analyze the pulmonary computed tomography (CT) characteristics and dynamic changes in the lungs of cured coronavirus disease 2019 (COVID-19) patients at discharge and reexamination. METHODS: A total of 155 cured COVID-19 patients admitted to designated hospitals in Yunnan Province, China, from February 1, 2020, to March 20, 2020, were included. All patients underwent pulmonary CT at discharge and at 2 weeks after discharge (during reexamination at hospital). A retrospective analysis was performed using these two pulmonary CT scans of the cured patients to observe changes in the number, distribution, morphology, and density of lesions. RESULTS: At discharge, the lung CT images of 15 cured patients showed no obvious lesions, while those of the remaining 140 patients showed different degrees of residual lesions. Patients with moderate disease mostly had multiple pulmonary lesions, mainly in the lower lobes of both lungs. At reexamination, the lung lesions in the patients with moderate disease had significantly improved (P<0.05), and the lung lesions in the patients with severe disease had partially improved, especially in patients with multi-lobe involvement (χ 2 =3.956, P<0.05). At reexamination, the lung lesions of patients with severe disease did not show significant changes (P>0.05). CONCLUSIONS: The pulmonary CT manifestations of cured COVID-19 patients had certain characteristics and variation patterns, providing a reference for the clinical evaluation of treatment efficacy and prognosis of patients.


Assuntos
COVID-19/diagnóstico por imagem , Sobreviventes , Tomografia Computadorizada por Raios X , China , Humanos , Pulmão/diagnóstico por imagem , Alta do Paciente , Estudos Retrospectivos
16.
Front Microbiol ; 11: 573430, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013809

RESUMO

Genomic analysis of SARS-CoV-2 sequences is crucial in determining the effectiveness of prudent safer at home measures in the United States (US). By haplotype analysis of 6,356 US isolates, we identified a pattern of strongly localized outbreaks at the city-, state-, and country-levels, and temporal transmissions. This points to the effectiveness of existing travel restriction policies and public health measures in reducing the transmission of SARS-CoV-2.

17.
Hum Mutat ; 41(12): 2028-2057, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32906214

RESUMO

Mitochondrial DNA (mtDNA) variant pathogenicity interpretation has special considerations given unique features of the mtDNA genome, including maternal inheritance, variant heteroplasmy, threshold effect, absence of splicing, and contextual effects of haplogroups. Currently, there are insufficient standardized criteria for mtDNA variant assessment, which leads to inconsistencies in clinical variant pathogenicity reporting. An international working group of mtDNA experts was assembled within the Mitochondrial Disease Sequence Data Resource Consortium and obtained Expert Panel status from ClinGen. This group reviewed the 2015 American College of Medical Genetics and Association of Molecular Pathology standards and guidelines that are widely used for clinical interpretation of DNA sequence variants and provided further specifications for additional and specific guidance related to mtDNA variant classification. These Expert Panel consensus specifications allow for consistent consideration of the unique aspects of the mtDNA genome that directly influence variant assessment, including addressing mtDNA genome composition and structure, haplogroups and phylogeny, maternal inheritance, heteroplasmy, and functional analyses unique to mtDNA, as well as specifications for utilization of mtDNA genomic databases and computational algorithms.


Assuntos
DNA Mitocondrial/genética , Variação Genética , Guias como Assunto , Sociedades Científicas , Bases de Dados Genéticas , Árvores de Decisões , Haplótipos/genética , Humanos , Fenótipo , Padrões de Referência
18.
Ophthalmic Genet ; 41(6): 526-532, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32799607

RESUMO

BACKGROUND: Detection of germline RB1 mutations is critical for risk assessment of retinoblastoma (RB) patients. Assessment of somatic copy number alterations (SCNAs) is also critically important because of their prognostic significance. Herein we present a refined approach for the simultaneous identification of RB1 variants and SCNAs in the aqueous humor (AH) of RB eyes. MATERIALS AND METHODS: Subjects included 7 eyes of 6 RB patients that underwent AH extraction, and 4 matched tumor samples. Cell-free DNA (cfDNA) was isolated and sequenced to assess genome-wide SCNAs. The same sequencing libraries then underwent targeted resequencing and mutation detection using a custom hybridization panel that targets RB1 and MYCN. Illumina paired-end 2x150bp sequencing was used to characterize single-nucleotide variants (SNVs) and loss of heterozygosity (LOH). Results were compared to peripheral blood RB1 testing. Tumor fraction (TFx) was calculated using ichorCNA. RESULTS: Four of 7 AH samples contained clinically significant SCNAs. Of the 3 other samples, 1 showed focal MYCN amplification and 1 showed focal RB1 deletion. All 4 enucleated tumors contained SCNAs. Mutational analysis of tumor DNA identified all first hits (2 germline RB1 SNVs, 2 germline CNAs) and second hits (4 RB1 SNVs). RB1 variants in AH were concordant with those obtained from corresponding tumor tissue and blood. In AH samples without paired tumor, both RB1 hits were identified with high variant allele frequency, even in the absence of SCNAs. CONCLUSIONS: AH liquid biopsy is a minimally invasive, in vivo alternative to tissue analysis for the simultaneous identification of RB1 variants and SCNAs in RB eyes.


Assuntos
Humor Aquoso/metabolismo , Variações do Número de Cópias de DNA , Marcadores Genéticos , Mutação , Neoplasias da Retina/patologia , Proteínas de Ligação a Retinoblastoma/genética , Retinoblastoma/patologia , Ubiquitina-Proteína Ligases/genética , Análise Mutacional de DNA , Humanos , Neoplasias da Retina/genética , Retinoblastoma/genética
19.
Clin Lab Med ; 40(2): 149-161, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32439066

RESUMO

Clinical bioinformatics system is well-established for diagnosing genetic disease based on next-generation sequencing, but requires special considerations when being adapted for the next-generation sequencing-based genetic diagnosis of mitochondrial diseases. Challenges are caused by the involvement of mitochondrial DNA genome in disease etiology. Heteroplasmy and haplogroup are key factors in interpreting mitochondrial DNA variant effects. Data resources and tools for analyzing variant and sequencing data are available at MSeqDR, MitoMap, and HmtDB. Revised specifications of the American College of Medical Genetics/Association of Molecular Pathology standards and guidelines for mitochondrial DNA variant interpretation are proposed by the MSeqDr Consortium and community experts.


Assuntos
Biologia Computacional , Doenças Mitocondriais , Técnicas de Diagnóstico Molecular , Análise de Sequência de DNA , Genoma Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Patologia Molecular
20.
Nat Med ; 25(11): 1680-1683, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31686034

RESUMO

We identified a PSEN1 (presenilin 1) mutation carrier from the world's largest autosomal dominant Alzheimer's disease kindred, who did not develop mild cognitive impairment until her seventies, three decades after the expected age of clinical onset. The individual had two copies of the APOE3 Christchurch (R136S) mutation, unusually high brain amyloid levels and limited tau and neurodegenerative measurements. Our findings have implications for the role of APOE in the pathogenesis, treatment and prevention of Alzheimer's disease.


Assuntos
Doença de Alzheimer/genética , Apolipoproteína E3/genética , Doenças Neurodegenerativas/genética , Presenilina-1/genética , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amiloide/genética , Amiloide/metabolismo , Apolipoproteína E2/genética , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Feminino , Homozigoto , Humanos , Masculino , Mutação/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA