Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 379: 128984, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37003453

RESUMO

Pelagic Sargassum is invasive macroalgae with huge biomass. To produce bulk chemicals with profit from the biomass, innovative strategies need to be developed. In this study, maximum saccharification yield of Sargassum horneri biomass was obtained with the combined use of 3% alginate lyase and 3% cellulase, releasing 20.83 g/L glucose and 1.73 g/L mannitol at a 1:6 feed ratio. Subsequently, the crude S. horneri hydrolysate (pH 3.0) was proved most suitable for erythritol production of Yarrowia lipolytica strain. After 60 h fermentation in a 10-L fermenter, the erythritol concentration reached 18.42 g/L with a yield of 0.82 g/g; while the concentration of alginate oligosaccharides (AOS) was 37.56 g/L. Finally, AOS with a purity of 93.4% were obtained by ethanol precipitation, and erythritol was harvested via crystallization. This proposed strategy demonstrates the feasibility of transforming invasive Sargassum into two high-value chemicals for the first time.


Assuntos
Sargassum , Yarrowia , Alginatos , Eritritol , Reatores Biológicos , Oligossacarídeos
2.
Front Bioeng Biotechnol ; 10: 866419, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35497365

RESUMO

Plant health is the fundamental of agricultural production, which is threatened by plant pathogens severely. The previous studies exhibited the effects of different pathogen control strategies (physical, chemical, and microbial methods), which resulted from bringing in exogenous additives, on microbial community structures and functions. Nevertheless, few studies focused on the potential inhibitory abilities of native microbial community in the soil, which could be activated or enhanced by different fertilization strategies. In this study, three plant diseases (TMV, TBS, and TBW) of tobacco, fungal community of tobacco rhizosphere soil, and the correlation between them were researched. The results showed that nitrogen-reducing fertilization strategies could significantly decrease the occurrence rate and the disease index of three tobacco diseases. The results of bioinformatics analyses revealed that the fungal communities of different treatments could differentiate the nitrogen-reducing fertilization group and the control group (CK). Furthermore, key genera which were responsible for the variation of fungal community were explored by LEfSe analysis. For instance, Tausonia and Trichocladium increased, while Naganishia and Fusicolla decreased under nitrogen-reducing fertilization conditions. Additionally, the correlation between tobacco diseases and key genera was verified using the Mantel test. Moreover, the causal relationship between key genera and tobacco diseases was deeply explored by PLS-PM analysis. These findings provide a theoretical basis for a nitrogen-reducing fertilization strategy against tobacco diseases without exogenous additives and make contributions to revealing the microbial mechanism of native-valued fungal key taxa against tobacco diseases, which could be stimulated by agricultural fertilization management.

3.
Front Bioeng Biotechnol ; 9: 812316, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087808

RESUMO

The overuse of chemical fertilizers has resulted in the degradation of the physicochemical properties and negative changes in the microbial profiles of agricultural soil. These changes have disequilibrated the balance in agricultural ecology, which has resulted in overloaded land with low fertility and planting obstacles. To protect the agricultural soil from the effects of unsustainable fertilization strategies, experiments of the reduction of nitrogen fertilization at 10, 20, and 30% were implemented. In this study, the bacterial responses to the reduction of nitrogen fertilizer were investigated. The bacterial communities of the fertilizer-reducing treatments (D10F, D20F, and D30F) were different from those of the control group (CK). The alpha diversity was significantly increased in D20F compared to that of the CK. The analysis of beta diversity revealed variation of the bacterial communities between fertilizer-reducing treatments and CK, when the clusters of D10F, D20F, and D30F were separated. Chemical fertilizers played dominant roles in changing the bacterial community of D20F. Meanwhile, pH, soil organic matter, and six enzymes (soil sucrase, catalase, polyphenol oxidase, urease, acid phosphatase, and nitrite reductase) were responsible for the variation of the bacterial communities in fertilizer-reducing treatments. Moreover, four of the top 20 genera (unidentified JG30-KF-AS9, JG30-KF-CM45, Streptomyces, and Elsterales) were considered as key bacteria, which contributed to the variation of bacterial communities between fertilizer-reducing treatments and CK. These findings provide a theoretical basis for a fertilizer-reducing strategy in sustainable agriculture, and potentially contribute to the utilization of agricultural resources through screening plant beneficial bacteria from native low-fertility soil.

4.
Sci Rep ; 6: 25305, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27121918

RESUMO

Pyrosequencing-based analyses revealed significant effects among low (N50), medium (N80), and high (N100) fertilization on community composition involving a long-term monoculture of lettuce in a greenhouse in both summer and winter. The non-fertilized control (CK) treatment was characterized by a higher relative abundance of Actinobacteria, Acidobacteria, and Chloroflexi; however, the average abundance of Firmicutes typically increased in summer, and the relative abundance of Bacteroidetes increased in winter in the N-fertilized treatments. Principle component analysis showed that the distribution of the microbial community was separated by a N gradient with N80 and N100 in the same group in the summer samples, while CK and N50 were in the same group in the winter samples, with the other N-level treatments existing independently. Redundancy analysis revealed that available N, NO3(-)-N, and NH4(+)-N, were the main environmental factors affecting the distribution of the bacterial community. Correlation analysis showed that nitrogen affected the shifts of microbial communities by strongly driving the shifts of Firmicutes, Bacteroidetes, and Proteobacteria in summer samples, and Bacteroidetes, Actinobacteria, and Acidobacteria in winter samples. The study demonstrates a novel example of rhizosphere bacterial diversity and the main factors influencing rizosphere microbial community in continuous vegetable cropping within an intensive greenhouse ecosystem.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Lactuca/microbiologia , Nitrogênio/análise , Rizosfera , Microbiologia do Solo , Fertilizantes/estatística & dados numéricos , Metagenômica , Estações do Ano , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA