Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
J Mater Chem B ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967310

RESUMO

The development of nanoformulations with simple compositions that can exert targeted combination therapy still remains a great challenge in the area of precision cancer nanomedicine. Herein, we report the design of a multifunctional nanoplatform based on methotrexate (MTX)-loaded layered double hydroxide (LDH) coated with chlorin e6 (Ce6)-modified MCF-7 cell membranes (CMM) for combined chemo/sonodynamic therapy of breast cancer. LDH nanoparticles were in situ loaded with MTX via coprecipitation, and coated with CMM that were finally functionalized with phospholipid-modified Ce6. The created nanoformulation of LDH-MTX@CMM-Ce6 displays good colloidal stability under physiological conditions and can release MTX in a pH-dependent manner. We show that the formulation can homologously target breast cancer cells, and induce their significant apoptosis through arresting the cell cycle via cooperative MTX-based chemotherapy and ultrasound (US)-activated sonodynamic therapy. The assistance of US can not only trigger sonosensitizer Ce6 to produce reactive oxygen species, but also enhance the cellular uptake of LDH-MTX@CMM-Ce6 via an acoustic cavitation effect. Upon intravenous injection and US irradiation, LDH-MTX@CMM-Ce6 displays an admirable antitumor performance towards a xenografted breast tumor mouse model. Furthermore, the modification of Ce6 on the CMM endows the LDH-based nanoplatform with fluorescence imaging capability. The developed LDH-based nanoformulation here provides a general intelligent cancer nanomedicine platform with simple composition and homologous targeting specificity for combined chemo/sonodynamic therapy and fluorescence imaging of tumors.

2.
Bioact Mater ; 38: 45-54, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38699237

RESUMO

Effective treatment of Parkinson's disease (PD), a prevalent central neurodegenerative disorder particularly affecting the elderly population, still remains a huge challenge. We present here a novel nanomedicine formulation based on bioactive hydroxyl-terminated phosphorous dendrimers (termed as AK123) complexed with fibronectin (FN) with anti-inflammatory and antioxidative activities. The created optimized AK123/FN nanocomplexes (NCs) with a size of 223 nm display good colloidal stability in aqueous solution and can be specifically taken up by microglia through FN-mediated targeting. We show that the AK123/FN NCs are able to consume excessive reactive oxygen species, promote microglia M2 polarization and inhibit the nuclear factor-kappa B signaling pathway to downregulate inflammatory factors. With the abundant dendrimer surface hydroxyl terminal groups, the developed NCs are able to cross blood-brain barrier (BBB) to exert targeted therapy of a PD mouse model through the AK123-mediated anti-inflammation for M2 polarization of microglia and FN-mediated antioxidant and anti-inflammatory effects, thus reducing the aggregation of α-synuclein and restoring the contents of dopamine and tyrosine hydroxylase to normal levels in vivo. The developed dendrimer/FN NCs combine the advantages of BBB-crossing hydroxyl-terminated bioactive per se phosphorus dendrimers and FN, which is expected to be extended for the treatment of different neurodegenerative diseases.

3.
ACS Appl Mater Interfaces ; 16(21): 27187-27201, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38747985

RESUMO

Development of theranostic nanomedicines to tackle glioma remains to be challenging. Here, we present an advanced blood-brain barrier (BBB)-crossing nanovaccine based on cancer cell membrane-camouflaged poly(N-vinylcaprolactam) (PVCL) nanogels (NGs) incorporated with MnO2 and doxorubicin (DOX). We show that the disulfide bond-cross-linked redox-responsive PVCL NGs can be functionalized with dermorphin and imiquimod R837 through cell membrane functionalization. The formed functionalized PVCL NGs having a size of 220 nm are stable, can deplete glutathione, and responsively release both Mn2+ and DOX under the simulated tumor microenvironment to exert the chemo/chemodynamic therapy mediated by DOX and Mn2+, respectively. The combined therapy induces tumor immunogenic cell death to maturate dendritic cells (DCs) and activate tumor-killing T cells. Further, the nanovaccine composed of cancer cell membranes as tumor antigens, R837 as an adjuvant with abilities of DC maturation and macrophages M1 repolarization, and MnO2 with Mn2+-mediated stimulator of interferon gene activation of tumor cells can effectively act on both targets of tumor cells and immune cells. With the dermorphin-mediated BBB crossing, cell membrane-mediated homologous tumor targeting, and Mn2+-facilitated magnetic resonance (MR) imaging property, the designed NG-based theranostic nanovaccine enables MR imaging and combination chemo-, chemodynamic-, and imnune therapy of orthotopic glioma with a significantly decreased recurrence rate.


Assuntos
Glioma , Imageamento por Ressonância Magnética , Compostos de Manganês , Nanomedicina Teranóstica , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico , Glioma/terapia , Glioma/patologia , Animais , Camundongos , Humanos , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Vacinas Anticâncer/química , Imunoterapia , Óxidos/química , Óxidos/farmacologia , Linhagem Celular Tumoral , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Barreira Hematoencefálica/metabolismo , Nanogéis/química , Imiquimode/química , Imiquimode/farmacologia , Nanovacinas
4.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731940

RESUMO

Amyloid fibroproliferation leads to organ damage and is associated with a number of neurodegenerative diseases affecting populations worldwide. There are several ways to protect against fibril formation, including inhibition. A variety of organic compounds based on molecular recognition of amino acids within the protein have been proposed for the design of such inhibitors. However, the role of macrocyclic compounds, i.e., thiacalix[4]arenes, in inhibiting fibrillation is still almost unknown. In the present work, the use of water-soluble thiacalix[4]arene derivatives for the inhibition of hen egg-white lysozyme (HEWL) amyloid fibrillation is proposed for the first time. The binding of HEWL by the synthesized thiacalix[4]arenes (logKa = 5.05-5.13, 1:1 stoichiometry) leads to the formation of stable supramolecular systems capable of stabilizing the protein structure and protecting against fibrillation by 29-45%. The macrocycle conformation has little effect on protein binding strength, and the native HEWL secondary structure does not change via interaction. The synthesized compounds are non-toxic to the A549 cell line in the range of 0.5-250 µg/mL. The results obtained may be useful for further investigation of the anti-amyloidogenic role of thiacalix[4]arenes, and also open up future prospects for the creation of new ways to prevent neurodegenerative diseases.


Assuntos
Ácidos Carboxílicos , Muramidase , Muramidase/química , Humanos , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Animais , Células A549 , Amiloide/química , Amiloide/metabolismo , Amiloide/antagonistas & inibidores , Ligação Proteica , Fenóis/química , Fenóis/farmacologia , Calixarenos/química , Calixarenos/farmacologia , Sulfetos
5.
ACS Nano ; 18(15): 10625-10641, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38563322

RESUMO

Development of nanomedicines that can collaboratively scavenge reactive oxygen species (ROS) and inhibit inflammatory cytokines, along with osteogenesis promotion, is essential for efficient osteoarthritis (OA) treatment. Herein, we report the design of a ROS-responsive nanomedicine formulation based on fibronectin (FN)-coated polymer nanoparticles (NPs) loaded with azabisdimethylphoaphonate-terminated phosphorus dendrimers (G4-TBP). The constructed G4-TBP NPs-FN with a size of 268 nm are stable under physiological conditions, can be specifically taken up by macrophages through the FN-mediated targeting, and can be dissociated in the oxidative inflammatory microenvironment. The G4-TBP NPs-FN loaded with G4-TBP dendrimer having intrinsic anti-inflammatory property and FN having both anti-inflammatory and antioxidative properties display integrated functions of ROS scavenging, hypoxia attenuation, and macrophage M2 polarization, thus protecting macrophages from apoptosis and creating designed bone immune microenvironment for stem cell osteogenic differentiation. These characteristics of the G4-TBP NPs-FN lead to their effective treatment of an OA model in vivo to reduce pathological changes of joints including synovitis inhibition and cartilage matrix degradation and simultaneously promote osteogenic differentiation for bone repair. The developed nanomedicine formulation combining the advantages of both bioactive phosphorus dendrimers and FN to treat OA may be developed for immunomodulatory therapy of different inflammatory diseases.


Assuntos
Dendrímeros , Nanopartículas , Osteoartrite , Humanos , Espécies Reativas de Oxigênio/metabolismo , Osteogênese , Dendrímeros/uso terapêutico , Osteoartrite/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Fósforo/uso terapêutico
7.
Biomater Sci ; 12(10): 2705-2716, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38607326

RESUMO

Developing effective nanomedicines to cross the blood-brain barrier (BBB) for efficient glioma theranostics is still considered to be a challenging task. Here, we describe the development of macrophage membrane (MM)-coated nanoclusters (NCs) of ultrasmall iron oxide nanoparticles (USIO NPs) with dual pH- and reactive oxygen species (ROS)-responsivenesses for magnetic resonance (MR) imaging and chemotherapy/chemodynamic therapy (CDT) of orthotopic glioma. Surface citrate-stabilized USIO NPs were solvothermally synthesized, sequentially modified with ethylenediamine and phenylboronic acid, and cross-linked with gossypol to form gossypol-USIO NCs (G-USIO NCs), which were further coated with MMs. The prepared MM-coated G-USIO NCs (G-USIO@MM NCs) with a mean size of 99.9 nm display tumor microenvironment (TME)-responsive gossypol and Fe release to promote intracellular ROS production and glutathione consumption. With the MM-mediated BBB crossing and glioma targeting, the G-USIO@MM NCs can specifically inhibit orthotopic glioma in vivo through the gossypol-mediated chemotherapy and Fe-mediated CDT. Meanwhile, USIO NPs can be dissociated from the NCs under the TME, thus allowing for effective T1-weighted glioma MR imaging. The developed G-USIO@MM NCs with simple components and drug as a crosslinker are promising for glioma theranostics, and may be extended to tackle other cancer types.


Assuntos
Glioma , Macrófagos , Nanomedicina Teranóstica , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Animais , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro/química , Imageamento por Ressonância Magnética , Humanos , Linhagem Celular Tumoral , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Espécies Reativas de Oxigênio/metabolismo , Membrana Celular/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos
8.
Nat Prod Res ; : 1-18, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38586940

RESUMO

Herein, we isolated five natural alkaloids, iso-corydine (iso-CORY), corydine (CORY), sanguinarine (SAN), chelerythrine (CHE) and magnoflorine (MAG), from traditional medicinal herb Dicranostigma leptopodum (Maxim.) Fedde (whole herb) and elucidated their structures. Then we synthesised G5. NHAc-PBA as targeting dendrimer platform to encapsulate the alkaloids into G5. NHAc-PBA-alkaloid complexes, which demonstrated alkaloid-dependent positive zeta potential and hydrodynamic particle size. G5. NHAc-PBA-alkaloid complexes demonstrated obvious breast cancer MCF-7 cell targeting effect. Among the G5. NHAc-PBA-alkaloid complexes, G5.NHAc-PBA-CHE (IC50=13.66 µM) demonstrated the highest MCF-7 cell inhibition capability and G5.NHAc-PBA-MAG (IC50=24.63 µM) had equivalent inhibitory effects on cell proliferation that comparable to the level of free MAG (IC50=23.74 µM), which made them the potential breast cancer targeting formulation for chemotherapeutic application. This work successfully demonstrated a pharmaceutical research model of 'natural bioactive product isolation-drug formulation preparation-breast cancer cell targeting inhibition'.

9.
ACS Nano ; 18(14): 10142-10155, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38526307

RESUMO

Fully mobilizing the activities of multiple immune cells is crucial to achieve the desired tumor immunotherapeutic efficacy yet still remains challenging. Herein, we report a nanomedicine formulation based on phosphorus dendrimer (termed AK128)/programmed cell death protein 1 antibody (aPD1) nanocomplexes (NCs) that are camouflaged with M1-type macrophage cell membranes (M1m) for enhanced immunotherapy of orthotopic glioma. The constructed AK128-aPD1@M1m NCs with a mean particle size of 160.3 nm possess good stability and cytocompatibility. By virtue of the decorated M1m having α4 and ß1 integrins, the NCs are able to penetrate the blood-brain barrier to codeliver both AK128 with intrinsic immunomodulatory activity and aPD1 to the orthotopic glioma with prolonged blood circulation time. We show that the phosphorus dendrimer AK128 can boost natural killer (NK) cell proliferation in peripheral blood mononuclear cells, while the delivered aPD1 enables immune checkpoint blockade (ICB) to restore the cytotoxic T cells and NK cells, thus promoting tumor cell apoptosis and simultaneously decreasing the tumor distribution of regulatory T cells vastly for improved glioma immunotherapy. The developed nanomedicine formulation with a simple composition achieves multiple modulations of immune cells by utilizing the immunomodulatory activity of nanocarrier and antibody-mediated ICB therapy, providing an effective strategy for cancer immunotherapy.


Assuntos
Dendrímeros , Glioma , Humanos , Fósforo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Biomimética , Glioma/terapia , Glioma/patologia , Imunoterapia , Células Matadoras Naturais , Anticorpos/metabolismo , Linfócitos T Citotóxicos , Barreira Hematoencefálica/metabolismo , Microambiente Tumoral
10.
Artigo em Inglês | MEDLINE | ID: mdl-38456205

RESUMO

The application of nanotechnology in biological and medical fields have resulted in the creation of new devices, supramolecular systems, structures, complexes, and composites. Dendrimers are relatively new nanotechnological polymers with unique features; they are globular in shape, with a topological structure formed by monomeric subunit branches diverging to the sides from the central nucleus. This review analyzes the main features of dendrimers and their applications in biology and medicine regarding cancer treatment. Dendrimers have applications that include drug and gene carriers, antioxidant agents, imaging agents, and adjuvants, but importantly, dendrimers can create complex nanosized constructions that combine features such as drug/gene carriers and imaging agents. Dendrimer-based nanosystems include different metals that enhance oxidative stress, polyethylene glycol to provide biosafety, an imaging agent (a fluorescent, radioactive, magnetic resonance imaging probe), a drug or/and nucleic acid that provides a single or dual action on cells or tissues. One of major benefit of dendrimers is their easy release from the body (in contrast to metal nanoparticles, fullerenes, and carbon nanotubes), allowing the creation of biosafe constructions. Some dendrimers are already clinically approved and are being used as drugs, but many nanocomplexes are currently being studied for clinical practice. In summary, dendrimers are very useful tool in the creation of complex nanoconstructions for personalized nanomedicine. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Assuntos
Dendrímeros , Nanotubos de Carbono , Neoplasias , Dendrímeros/uso terapêutico , Portadores de Fármacos/uso terapêutico , Nanotecnologia , Nanomedicina/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
11.
Biomater Sci ; 12(6): 1346-1356, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38362780

RESUMO

Glioma, as a disease of the central nervous system, is difficult to be treated due to the presence of the blood-brain barrier (BBB) that can severely hamper the efficacy of most therapeutic agents. Hence, drug delivery to glioma in an efficient, safe, and specifically targeted manner is the key to effective treatment of glioma. With the advances in nanotechnology, targeted drug delivery systems have been extensively explored to deliver chemotherapeutic agents, nucleic acids, and contrast agents. Among these nanocarriers, dendrimers have played a significant role since they possess highly branched structures, and are easy to be decorated, thus offering numerous binding sites for various drugs and ligands. Dendrimers can be designed to cross the BBB for glioma targeting, therapy or theranostics. In this review, we provide a concise overview of dendrimer-based carrier designs including dendrimer surface modification with hydroxyl termini, peptides, and transferrin etc. for glioma imaging diagnostics, chemotherapy, gene therapy, or imaging-guided therapy. Finally, the future perspectives of dendrimer-based glioma theraputics are also briefly discussed.


Assuntos
Dendrímeros , Glioma , Humanos , Barreira Hematoencefálica/metabolismo , Dendrímeros/química , Medicina de Precisão , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico , Glioma/metabolismo , Sistemas de Liberação de Medicamentos/métodos
12.
ACS Nano ; 18(3): 2195-2209, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38194222

RESUMO

Nanocarrier-based cytoplasmic protein delivery offers opportunities to develop protein therapeutics; however, many delivery systems are positively charged, causing severe toxic effects. For enhanced therapeutics, it is also of great importance to design nanocarriers with intrinsic bioactivity that can be integrated with protein drugs due to the limited bioactivity of proteins alone for disease treatment. We report here a protein delivery system based on anionic phosphite-terminated phosphorus dendrimers with intrinsic anti-inflammatory activity. A phosphorus dendrimer termed AK-137 with optimized anti-inflammatory activity was selected to complex proteins through various physical interactions. Model proteins such as bovine serum albumin, ribonuclease A, ovalbumin, and fibronectin (FN) can be transfected into cells to exert their respective functions, including cancer cell apoptosis, dendritic cell maturation, or macrophage immunomodulation. Particularly, the constructed AK-137@FN nanocomplexes display powerful therapeutic effects in acute lung injury and acute gout arthritis models by integrating the anti-inflammatory activity of both the carrier and protein. The developed anionic phosphite-terminated phosphorus dendrimers may be employed as a universal carrier for protein delivery and particularly utilized to deliver proteins and fight different inflammatory diseases with enhanced therapeutic efficacy.


Assuntos
Dendrímeros , Fosfitos , Dendrímeros/farmacologia , Fósforo , Proteínas , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
13.
Biomacromolecules ; 25(2): 1171-1179, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38181417

RESUMO

The development of nonviral dendritic polymers with a simple molecular backbone and great gene delivery efficiency to effectively tackle cancer remains a great challenge. Phosphorus dendrimers or dendrons are promising vectors due to their structural uniformity, rigid molecular backbones, and tunable surface functionalities. Here, we report the development of a new low-generation unsymmetrical cationic phosphorus dendrimer bearing 5 pyrrolidinium groups and one amino group as a nonviral gene delivery vector. The created AB5-type dendrimers with simple molecular backbone can compress microRNA-30d (miR-30d) to form polyplexes with desired hydrodynamic sizes and surface potentials and can effectively transfect miR-30d to cancer cells to suppress the glycolysis-associated SLC2A1 and HK1 expression, thus significantly inhibiting the migration and invasion of a murine breast cancer cell line in vitro and the corresponding subcutaneous tumor mouse model in vivo. Such unsymmetrical low-generation phosphorus dendrimers may be extended to deliver other genetic materials to tackle other diseases.


Assuntos
Dendrímeros , MicroRNAs , Neoplasias , Animais , Camundongos , Dendrímeros/química , Vetores Genéticos , MicroRNAs/genética , Técnicas de Transferência de Genes , Cátions , Fósforo
14.
ACS Nano ; 17(23): 23889-23902, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38006397

RESUMO

Development of a nanoscale drug delivery system that can simultaneously exert efficient tumor therapeutic efficacy while creating the desired antitumor immune responses is still challenging. Herein, we report the use of a manganese dioxide (MnO2)-entrapping dendrimer nanocarrier to codeliver glucose oxidase (GOx) and cyclic GMP-AMP (cGAMP), an agonist of the stimulator of interferon genes (STING) for improved tumor chemodynamic/starvation/immune therapy. Methoxy poly(ethylene glycol) (mPEG)- and phenylboronic acid (PBA)-modified generation 5 (G5) poly(amidoamine) dendrimers were first synthesized and then entrapped with MnO2 nanoparticles (NPs) to generate the hybrid MnO2@G5-mPEG-PBA (MGPP) NPs. The created MGPP NPs with an MnO2 core size of 2.8 nm display efficient glutathione depletion ability, and a favorable Mn2+ release profile under a tumor microenvironment mimetic condition to enable Fenton-like reaction and T1-weighted magnetic resonance (MR) imaging. We show that the MGPP-mediated GOx delivery facilitates enhanced chemodynamic/starvation therapy of cancer cells in vitro, and further codelivery of cGAMP can effectively trigger immunogenic cell death (ICD) to strongly promote the maturation of dendritic cells. In a bilateral mouse colorectal tumor model, the dendrimer delivery nanosystem elicits a potent antitumor performance with a strong abscopal effect, greatly improving the overall mouse survival rate. Importantly, the dendrimer-mediated codelivery not only allows the coordination of Mn2+ with GOx and cGAMP for respective chemodynamic/starvation-triggered ICD and augmented STING activation to boost systemic antitumor immune responses, but also enables T1-weighted tumor MR imaging, potentially serving as a promising nanoplatform for enhanced antitumor therapy with desired immune responses.


Assuntos
Neoplasias Colorretais , Dendrímeros , Nanopartículas , Neoplasias , Animais , Camundongos , Compostos de Manganês/farmacologia , Nucleotídeos , Óxidos , Imageamento por Ressonância Magnética , Glucose Oxidase , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/tratamento farmacológico , Modelos Animais de Doenças , Espectroscopia de Ressonância Magnética , Microambiente Tumoral
15.
Biomater Sci ; 11(22): 7387-7396, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37791576

RESUMO

Nanoplatforms with amplified passive tumor targeting and enhanced protein resistance can evade unnecessary uptake by the reticuloendothelial system and achieve high tumor retention for accurate tumor theranostics. To achieve this goal, we here constructed phosphorus core-shell tecto dendrimers (CSTDs) with a rigid aromatic backbone core as a nanoplatform for enhanced fluorescence and single-photon emission computed tomography (SPECT) dual-mode imaging of tumors. In this study, the phosphorus P-G2.5/G3 CSTDs (G denotes generation) were partially conjugated with tetraazacyclododecane tetraacetic acid (DOTA), cyanine5.5 (Cy5.5) and 1,3-propane sulfonate (1,3-PS) and then labeled with 99mTc. The formed P-G2.5/G3-DOTA-Cy5.5-PS CSTDs possess good monodispersity with a particle size of 10.1 nm and desired protein resistance and cytocompatibility. Strikingly, compared to the counterpart material G3/G3-DOTA-Cy5.5-PS with both the core and shell components being soft poly(amidoamine) dendrimers, the developed P-G2.5/G3-DOTA-Cy5.5-PS complexes allow for more efficient cellular uptake and more significant penetration in 3-dimensional tumor spheroids in vitro, as well as more significant tumor retention and accumulation for enhanced dual-mode fluorescence and SPECT (after labelling with 99mTc) tumor imaging in vivo. Our studies suggest that the rigidity of the core for the constructed CSTDs matters in the amplification of the tumor enhanced permeability retention (EPR) effect for improved cancer nanomedicine development.


Assuntos
Dendrímeros , Neoplasias , Humanos , Tomografia Computadorizada de Emissão de Fóton Único , Linhagem Celular Tumoral
16.
Macromol Biosci ; 23(11): e2300188, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37300444

RESUMO

Recently, several immunotherapeutic strategies are extensively studied and entered clinical investigation, suggesting their potential to lead a new generation of cancer therapy. Particularly, a cancer vaccine that combines tumor-associated antigens and immune adjuvants with a nanocarrier holds huge promise for inducing specific antitumor immune responses. Hyperbranched polymers, such as dendrimers and branched polyethylenimine (PEI) possessing abundant positively charged amine groups and inherent proton sponge effect are ideal carriers of antigens. Much effort is devoted to design dendrimer/branched PEI-based cancer vaccines. Herein, the recent advances in the design of dendrimer/branched PEI-based cancer vaccines for immunotherapy are reviewed. The future perspectives with regard to the development of dendrimer/branched PEI-based cancer vaccines are also briefly discussed.


Assuntos
Vacinas Anticâncer , Dendrímeros , Neoplasias , Humanos , Vacinas Anticâncer/uso terapêutico , Dendrímeros/farmacologia , Dendrímeros/uso terapêutico , Neoplasias/terapia , Imunoterapia , Polietilenoimina , Polímeros
17.
Adv Sci (Weinh) ; 10(24): e2301759, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37350493

RESUMO

Developing a multifunctional nanoplatform to achieve efficient theranostics of tumors through multi-pronged strategies remains to be challenging. Here, the design of the intelligent redox-responsive generation 3 (G3) poly(amidoamine) dendrimer nanogels (NGs) loaded with gold nanoparticles (Au NPs) and chemotherapeutic drug toyocamycin (Au/Toy@G3 NGs) for ultrasound-enhanced cancer theranostics is showcased. The constructed hybrid NGs with a size of 193 nm possess good colloidal stability under physiological conditions, and can be dissociated to release Au NPs and Toy in the reductive glutathione-rich tumor microenvironment (TME). The released Toy can promote the apoptosis of cancer cells through endoplasmic reticulum stress amplification and cause immunogenic cell death to maturate dendritic cells. The loaded Au NPs can induce the conversion of tumor-associated macrophages from M2-type to antitumor M1-type to remodulate the immunosuppressive TME. Combined with antibody-mediated immune checkpoint blockade, effective chemoimmunotherapy of a pancreatic tumor mouse model can be realized, and the chemoimmunotherapy effect can be further ultrasound enhanced due to the sonoporation-improved tumor permeability of NGs. The developed Au/Toy@G3 NGs also enable Au-mediated computed tomography imaging of tumors. The constructed responsive dendrimeric NGs tackle tumors through a multi-pronged chemoimmunotherapy strategy targeting both cancer cells and immune cells, which hold a promising potential for clinical translations.


Assuntos
Dendrímeros , Nanopartículas Metálicas , Neoplasias Pancreáticas , Animais , Camundongos , Nanogéis , Ouro , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Oxirredução , Macrófagos , Microambiente Tumoral , Neoplasias Pancreáticas
18.
J Mater Chem B ; 11(21): 4808-4818, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37212531

RESUMO

It remains an extreme challenge to develop multifunctional drug delivery systems with tumor specificity and a tumor microenvironment (TME) remodeling ability for achieving improved chemotherapy against malignant tumors. Herein, we report the design of diselenide-crosslinked poly(N-vinylcaprolactam) (PVCL) nanogels (NGs) co-loaded with gold (Au) nanoparticles (NPs) and methotrexate (MTX) as a multifunctional nanoplatform (for short, MTX/Au@PVCL NGs) for improved chemotherapy and computed tomography (CT) imaging of tumors. The designed MTX/Au@PVCL NGs show excellent colloidal stability under physiological conditions, while dissociating rapidly to release the incorporated Au NPs and MTX in the H2O2-abundant and slightly acidic TME. The responsive release of Au NPs and MTX effectively induces the apoptosis of cancer cells and prevents DNA replication, together contributing to the repolarization of macrophages from protumor M2-like to antitumor M1-like phenotype in vitro. The MTX/Au@PVCL NGs also enable the remodeling of tumor-associated macrophages to the M1-like phenotype in vivo in a subcutaneous mouse melanoma model, which increases the recruitment of effector T lymphocytes and reduces the content of immunosuppressive regulatory T cells to achieve synergistically enhanced antitumor efficacy when combined with MTX-mediated chemotherapy. Moreover, the MTX/Au@PVCL NGs can be used for Au-mediated CT imaging of tumors. The thus developed NG platform shows great promise as an updated nanomedicine formulation for immune modulation-enhanced tumor chemotherapy under the guidance of CT imaging.


Assuntos
Nanopartículas Metálicas , Neoplasias , Camundongos , Animais , Metotrexato , Nanogéis/uso terapêutico , Ouro/uso terapêutico , Peróxido de Hidrogênio/uso terapêutico , Neoplasias/tratamento farmacológico , Tomografia Computadorizada por Raios X/métodos , Microambiente Tumoral
19.
J Control Release ; 358: 601-611, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37201799

RESUMO

Development of effective nanomedicines to deal with tumor immunogenicity and immunosuppression is vital to improve the immunotherapy efficacy. Herein, we developed a programmed strategy not only to activate the tumoral immune microenvironment through immunogenic cell death (ICD) effect but also to promote the maturation of dendritic cells (DCs) in lymph nodes through two modules of core-shell tecto dendrimer (CSTD)-based nanomedicines. The CSTDs with amplified tumor enhanced permeability and retention effect and improved gene delivery efficiency were formed by supramolecular self-assembly of generation 5 (G5) poly(amidoamine) dendrimers as cores and G3 dendrimers as shells. One module was employed to load doxorubicin for cancer cell chemotherapy to generate ICD, while the other module with partial surface modification of zwitterions and mannose was used for serum-enhanced YTHDF1 siRNA delivery to DCs to stimulate their maturation. These two modular CSTD-based nanomedicine formulations enable enhanced chemoimmunotherapy of an orthotopic breast tumor model through programmed treatment of cancer cells and DCs, and synergistic modulation of the maturation of DCs to activate the CD8+/CD4+ T cells for tumor killing. The developed CSTD-enabled nanomodules with improved drug/gene delivery performance may be applicable to tackle other cancer types via collaborative chemoimmunotherapy.


Assuntos
Neoplasias da Mama , Dendrímeros , Humanos , Feminino , Dendrímeros/química , Doxorrubicina , Sistemas de Liberação de Medicamentos , Imunoterapia , Linhagem Celular Tumoral , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA