Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Adv Res ; 39: 73-88, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35777918

RESUMO

INTRODUCTION: The regenerative capacity of mesenchymal stromal cells or medicinal signaling cells (MSCs) is largely mediated by their secreted small extracellular vesicles (sEVs), and the therapeutic efficacy of sEVs can be enhanced by licensing approaches (e.g., cytokines, hypoxia, chemicals, and genetic modification). Noncoding RNAs within MSC-derived sEVs (MSC-sEVs) have been demonstrated to be responsible for tissue regeneration. However, unlike miRNA fingerprints, which have been explored, the landscape of long noncoding RNAs (lncRNAs) in MSC-sEVs remains to be described. OBJECTIVES: To characterize lncRNA signatures in sEVs of human adipose-derived MSCs with or without inflammatory cytokine licensing and depict MSC-sEV-specific and MSC-enriched lncRNA repertoires. METHODS: sEVs were isolated from MSCs with or without TNF-α and IFN-γ (20 ng/mL) stimulation. High-throughput lncRNA sequencing and an in silico approach were employed to analyze the profile of lncRNAs in sEVs and predict lncRNA-protein interactomes. RESULTS: sEVs derived from human MSCs and fibroblasts carried a unique landscape of lncRNAs distinct from the lncRNAs inside these cells. Compared with fibroblast-derived sEVs (F-sEVs), 194 MSC-sEV-specific and 8 upregulated lncRNAs in MSC-sEVs were considered "medicinal signaling lncRNAs"; inflammatory cytokines upregulated 27 lncRNAs in MSC-sEVs, which were considered "licensing-responsive lncRNAs". Based on lncRNA-protein interactome prediction and enrichment analysis, we found that the proteins interacting with medicinal signaling lncRNAs or licensing-responsive lncRNAs have a tight interaction network involved in chromatin remodeling, SWI/SNF superfamily type complexes, and histone binding. CONCLUSION: In summary, our study depicts the landscape of lncRNAs in MSC-sEVs and predicts their potential functions via the lncRNA-protein interactome. Elucidation of the lncRNA landscape of MSC-sEVs will facilitate defining the therapeutic potency of MSC-sEVs and the development of sEV-based therapeutics.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , RNA Longo não Codificante , Citocinas , Vesículas Extracelulares/genética , Humanos , RNA Longo não Codificante/genética , Vesículas Secretórias
2.
Biomedicines ; 9(9)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34572283

RESUMO

As one of the most common genetic conditions, Duchenne muscular dystrophy (DMD) is a fatal disease caused by a recessive mutation resulting in muscle weakness in both voluntary and involuntary muscles and, eventually, in death because of cardiovascular failure. Currently, there is no pharmacologically curative treatment of DMD, but there is evidence supporting that mesenchymal stem cells (MSCs) are a novel solution for treating DMD. This systematic review focused on elucidating the therapeutic efficacy of MSCs on the DMD in vivo model. A key issue of previous studies was the material-choice, naïve MSCs or modified MSCs; modified MSCs are activated by culture methods or genetic modification. In summary, MSCs seem to improve pulmonary and cardiac functions and thereby improve survival regardless of them being naïve or modified. The improved function of distal skeletal muscles was observed only with primed MSCs treatment but not naïve MSCs. While MSCs can provide significant benefits to DMD mouse models, there is little to no data on the results in human patients. Due to the limited number of human studies, the differences in study design, and the insufficient understanding of mechanisms of action, more rigorous comparative trials are needed to elucidate which types of MSCs and modifications have optimal therapeutic potential.

3.
Stem Cells Int ; 2021: 8835156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34221025

RESUMO

Bone regeneration is a complex and well-coordinated process that involves crosstalk between immune cells and resident cells in the injury site. Transplantation of mesenchymal stem cells (MSCs) is a promising strategy to enhance bone regeneration. Growing evidence suggests that macrophages have a significant impact on osteogenesis during bone regeneration. However, the precise mechanisms by which macrophage subtypes influence bone regeneration and how MSCs communicate with macrophages have not yet been fully elucidated. In this systematic literature review, we gathered evidence regarding the crosstalk between MSCs and macrophages during bone regeneration. According to the PRISMA protocol, we extracted literature from PubMed and Embase databases by using "mesenchymal stem cells" and "macrophages" and "bone regeneration" as keywords. Thirty-three studies were selected for this review. MSCs isolated from both bone marrow and adipose tissue and both primary macrophages and macrophage cell lines were used in the selected studies. In conclusion, anti-inflammatory macrophages (M2) have significantly more potential to strengthen bone regeneration compared with naïve (M0) and classically activated macrophages (M1). Transplantation of MSCs induced M1-to-M2 transition and transformed the skeletal microenvironment to facilitate bone regeneration in bone fracture and bone defect models. This review highlights the complexity between MSCs and macrophages, providing more insight into the polarized macrophage behavior in this evolving field of osteoimmunology. The results may serve as a useful reference for definite success in MSC-based therapy based on the critical interaction with macrophages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA