Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Mol Biosci ; 11: 1375360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962282

RESUMO

Background: High altitude de-acclimatization (HADA) is gradually becoming a public health concern as millions of individuals of different occupations migrate to high-altitude areas for work due to economic growth in plateau areas. HADA affects people who return to lower elevations after exposure to high altitudes. It causes significant physiological and functional changes that can negatively impact health and even endanger life. However, uncertainties persist about the detailed mechanisms underlying HADA. Methods: We established a population cohort of individuals with HADA and assessed variations in metabolite composition. Plasm samples of four groups, including subjects staying at plain (P) and high altitude (H) as well as subjects suffering from HADA syndrome with almost no reaction (r3) and mild-to-moderate reaction (R3) after returning to plain from high altitude, were collected and analyzed by Liquid Chromatography-Mass Spectrometry metabolomic. Multivariate statistical analyses were used to explore significant differences and potential clinical prospect of metabolites. Result: Although significantly different on current HADAS diagnostic symptom score, there were no differences in 17 usual clinical indices between r3 and R3. Further multivariate analyses showed isolated clustering distribution of the metabolites among the four groups, suggesting significant differences in their metabolic characteristics. Through K-means clustering analysis, we identified 235 metabolites that exhibited patterns of abundance change consistent with phenotype of HADA syndrome. Pathway enrichment analysis indicated a high influence of polyunsaturated fatty acids under high-altitude conditions. We compared the metabolites between R3 and r3 and found 107 metabolites with differential abundance involved in lipid metabolism and oxidation, suggesting their potential role in the regulation of oxidative stress homeostasis. Among them, four metabolites might play a key role in the occurrence of HADA, including 11-beta-hydroxyandrosterone-3-glucuronide, 5-methoxyindoleacetate, 9,10-epoxyoctadecenoic acid, and PysoPC (20:5). Conclusion: We observed the dynamic variation in the metabolic process of HADA. Levels of four metabolites, which might be provoking HADA mediated through lipid metabolism and oxidation, were expected to be explore prospective indices for HADA. Additionally, metabolomics was more efficient in identifying environmental risk factors than clinical examination when dramatic metabolic disturbances underlying the difference in symptoms were detected, providing new insights into the molecular mechanisms of HADAS.

2.
Ecotoxicol Environ Saf ; 282: 116655, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38968871

RESUMO

Various biological effects of ionizing radiation, especially continuous exposure to low-dose radiation (LDR), have attracted considerable attention. Impaired bone structure caused by LDR has been reported, but little is known about the mechanism involved in the disruption of bone metabolism. In this study, given that LDR was found to (at a cumulative dose of 0.10 Gy) disturb the serum Mg2+ level and Notch1 signal in the mouse femur tissues, the effects of LDR on osteogenesis and the underlying molecular mechanisms were investigated based on an in vitro culture system for bone marrow stromal cells (BMSCs). Our data showed that cumulative LDR suppressed the osteogenic potential in BMSCs as a result of upregulation of Notch1 signaling. Further analyses indicated that the upregulation of NICD1 (Notch1 intracellular domain), the key intracellular domain for Notch1 signaling, under LDR was a consequence of enhanced protein stabilization caused by SUMOylation (small ubiquitin-like modification). Specifically, the downregulation of SENP1 (sentrin/SUMO-specific protease 1) expression induced by LDR enhanced the SUMOylation of NICD1, causing the accumulation of Notch1 signaling, which eventually inhibited the osteogenic potential of BMSCs. In conclusion, this work expounded on the mechanisms underlying the impacts of LDR on bone metabolism and shed light on the research on bone regeneration under radiation.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais , Osteogênese , Receptor Notch1 , Sumoilação , Animais , Osteogênese/efeitos da radiação , Camundongos , Sumoilação/efeitos da radiação , Receptor Notch1/metabolismo , Receptor Notch1/genética , Células-Tronco Mesenquimais/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Masculino , Fêmur/efeitos da radiação , Relação Dose-Resposta à Radiação
3.
Phytomedicine ; 132: 155888, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39084128

RESUMO

BACKGROUND: The efficacy of Liangxue Guyuan Yishen Decoction (LGYD), a traditional Chinese medicine, has been scientifically proven in the treatment of radiation-induced intestinal injury (RIII) and preservation of intestinal integrity and function following high-dose radiation exposure. However, further investigation is required to comprehensively elucidate the precise mechanisms underlying the therapeutic effects of LGYD in order to provide potential pharmaceutical options for radiation protection. PURPOSE: This study aims to elucidate the potential mechanism through which LGYD exerts its therapeutic effects on RIII by modulating the gut microbiota (GM). METHODS: 16 s rRNA analysis was employed to assess the impact of varying doses of whole body irradiation (WBI) on GM in order to establish an appropriate model for this study. The effects of LGYD on GM and SCFA were evaluated using 16 s rRNA and Quantification of SCFA. UHPLC-QE-MS was utilized to identify the active components in LGYD as well as LGYD drug containing serum (LGYD-DS). Subsequently, immunofluorescence and immunohistochemical staining were conducted to validate the influence of LGYD and/or characteristic microbiota on RIII recovery in vivo. The effects of LGYD-DS, characteristic flora, and SCFA on intestinal stem cell (ISC) were assessed by measuring organoid surface area in intestinal organoid model. RESULTS: The species composition and abundance of GM were significantly influenced by whole-body irradiation with a dose of 8.5 Gy, which was used as in vivo model. LGYD significantly improves the survival rate and promotes recovery from RIII. Additionally, LGYD exhibited a notable increase in the abundance of Akkermansia muciniphila (AKK) and levels of SCFA, particularly isobutyric acid. LGYD-DS consisted of seven main components derived from herbs of LGYD. In vivo experiments indicated that both LGYD and AKK substantially enhanced the survival rate after radiation and facilitated the recovery process for intestinal structure and function. In the organoid model, treatment with LGYD-DS, AKK supernatant or isobutyric acid significantly increased organoid surface area. CONCLUSIONS: LGYD has the potential to enhance RIII by promoting the restoration of intestinal stem cell, which is closely associated with the upregulation of AKK abundance and production of SCFA, particularly isobutyric acid.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Animais , Medicamentos de Ervas Chinesas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Masculino , Células-Tronco/efeitos dos fármacos , Akkermansia/efeitos dos fármacos , Verrucomicrobia/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Intestinos/efeitos da radiação , Irradiação Corporal Total , Camundongos Endogâmicos C57BL
4.
Sci Total Environ ; 947: 174450, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38969138

RESUMO

Fine particulate matter (PM2.5) can cause brain damage and diseases. Of note, ultrafine particles (UFPs) with an aerodynamic diameter less than or equal to 100 nm are a growing concern. Evidence has suggested toxic effects of PM2.5 and UFPs on the brain and links to neurological diseases. However, the underlying mechanism has not yet been fully illustrated due to the variety of the study models, different endpoints, etc. The adverse outcome pathway (AOP) framework is a pathway-based approach that could systematize mechanistic knowledge to assist health risk assessment of pollutants. Here, we constructed AOPs by collecting molecular mechanisms in PM-induced neurotoxicity assessments. We chose particulate matter (PM) as a stressor in the Comparative Toxicogenomics Database (CTD) and identified the critical toxicity pathways based on Ingenuity Pathway Analysis (IPA). We found 65 studies investigating the potential mechanisms linking PM2.5 and UFPs to neurotoxicity, which contained 2, 675 genes in all. IPA analysis showed that neuroinflammation signaling and glucocorticoid receptor signaling were the common toxicity pathways. The upstream regulator analysis (URA) of PM2.5 and UFPs demonstrated that the neuroinflammation signaling was the most initially triggered upstream event. Therefore, neuroinflammation was recognized as the MIE. Strikingly, there is a clear sequence of activation of downstream signaling pathways with UFPs, but not with PM2.5. Moreover, we found that inflammation response and homeostasis imbalance were key cellular events in PM2.5 and emphasized lipid metabolism and mitochondrial dysfunction, and blood-brain barrier (BBB) impairment in UFPs. Previous AOPs, which only focused on phenotypic changes in neurotoxicity upon PM exposure, we for the first time propose AOP framework in which PM2.5 and UFPs may activate pathway cascade reactions, resulting in adverse outcomes associated with neurotoxicity. Our toxicity pathway-based approach not only advances risk assessment for PM-induced neurotoxicity but shines a spotlight on constructing AOP frameworks for new chemicals.


Assuntos
Rotas de Resultados Adversos , Poluentes Atmosféricos , Material Particulado , Material Particulado/toxicidade , Poluentes Atmosféricos/toxicidade , Humanos , Síndromes Neurotóxicas , Transdução de Sinais/efeitos dos fármacos , Tamanho da Partícula , Medição de Risco
5.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3125-3131, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39041072

RESUMO

Traditional Chinese medicine with rich resources in China and definite therapeutic effects on complex diseases demonstrates great development potential. However, the complex composition, the unclear pharmacodynamic substances and mechanisms of action, and the lack of reasonable methods for evaluating clinical safety and efficacy have limited the research and development of innovative drugs based on traditional Chinese medicine. The progress in cutting-edge disciplines such as artificial intelligence and biomimetics, especially the emergence of cell painting and organ-on-a-chip, helps to identify and characterize the active ingredients in traditional Chinese medicine based on the changes in model characteristics, thus providing more accurate guidance for the development and application of traditional Chinese medicine. The application of phenotypic drug discovery in the research and development of innovative drugs based on traditional Chinese medicine is gaining increasing attention. In recent years, the technology for phenotypic drug discovery keeps advancing, which improves the early discovery rate of new drugs and the success rate of drug research and development. Accordingly, phenotypic drug discovery gradually becomes a key tool for the research on new drugs. This paper discusses the enormous potential of traditional Chinese medicine in the discovery and development of innovative drugs and illustrates how the application of phenotypic drug discovery, supported by cutting-edge technologies such as cell painting, deep learning, and organ-on-a-chip, propels traditional Chinese medicine into a new stage of development.


Assuntos
Descoberta de Drogas , Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Fenótipo , Animais , Desenvolvimento de Medicamentos
6.
Sci Rep ; 14(1): 14114, 2024 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898142

RESUMO

The aim of this study was to develop a simple but effective nomogram to predict risk of septic cardiomyopathy (SCM) in the intensive care unit (ICU). We analyzed data from patients who were first admitted to the ICU for sepsis between 2008 and 2019 in the MIMIC-IV database, with no history of heart disease, and divided them into a training cohort and an internal validation cohort at a 7:3 ratio. SCM is defined as sepsis diagnosed in the absence of other cardiac diseases, with echocardiographic evidence of left (or right) ventricular systolic or diastolic dysfunction and a left ventricular ejection fraction (LVEF) of less than 50%. Variables were selected from the training cohort using the Least Absolute Shrinkage and Selection Operator (LASSO) regression to develop an early predictive model for septic cardiomyopathy. A nomogram was constructed using logistic regression analysis and its receiver operating characteristic (ROC) and calibration were evaluated in two cohorts. A total of 1562 patients participated in this study, with 1094 in the training cohort and 468 in the internal validation cohort. SCM occurred in 13.4% (147 individuals) in the training cohort, 16.0% (75 individuals) in the internal validation cohort. After adjusting for various confounding factors, we constructed a nomogram that includes SAPS II, Troponin T, CK-MB index, white blood cell count, and presence of atrial fibrillation. The area under the curve (AUC) for the training cohort was 0.804 (95% CI 0.764-0.844), and the Hosmer-Lemeshow test showed good calibration of the nomogram (P = 0.288). Our nomogram also exhibited good discriminative ability and calibration in the internal validation cohort. Our nomogram demonstrated good potential in identifying patients at increased risk of SCM in the ICU.


Assuntos
Cardiomiopatias , Unidades de Terapia Intensiva , Nomogramas , Sepse , Humanos , Masculino , Feminino , Cardiomiopatias/diagnóstico , Pessoa de Meia-Idade , Sepse/diagnóstico , Idoso , Curva ROC , Fatores de Risco , Medição de Risco/métodos
7.
Free Radic Biol Med ; 222: 288-303, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830513

RESUMO

Radiation enteritis remains a major challenge for radiotherapy against abdominal and pelvic malignancies. Nevertheless, there is no approved effective therapy to alleviate irradiation (IR)-induced gastrointestinal (GI) toxicity. In the current study, Cannabidiol (CBD) was found to mitigate intestinal injury by GPX4-mediated ferroptosis resistance upon IR exposure. RNA-sequencing was employed to investigate the underlying mechanism involved in the radio-protective effect of CBD, wherein runt-related transcription factor 3 (RUNX3) and its target genes were changed significantly. Further experiment showed that the transactivation of GPX4 triggered by the direct binding of RUNX3 to its promoter region, or by stimulating the transcriptional activity of NF-κB via RUNX3-mediated LILRB3 upregulation was critical for the anti-ferroptotic effect of CBD upon IR injury. Specially, CBD was demonstrated to be a molecular glue skeleton facilitating the heterodimerization of RUNX3 with its transcriptional chaperone core-biding factor ß (CBFß) thereby promoting their nuclear localization and the subsequent transactivation of GPX4 and LILRB3. In short, our study provides an alternative strategy to counteract IR-induced enteritis during the radiotherapy on abdominal/pelvic neoplasms.

8.
Cell Death Dis ; 15(6): 392, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834617

RESUMO

Keratinocyte proliferation and differentiation in epidermis are well-controlled and essential for reacting to stimuli such as ultraviolet light. Imbalance between proliferation and differentiation is a characteristic feature of major human skin diseases such as psoriasis and squamous cell carcinoma. However, the effect of keratinocyte metabolism on proliferation and differentiation remains largely elusive. We show here that the gluconeogenic enzyme fructose-1,6-bisphosphatase 1 (FBP1) promotes differentiation while inhibits proliferation of keratinocyte and suppresses psoriasis development. FBP1 is identified among the most upregulated genes induced by UVB using transcriptome sequencing and is elevated especially in upper epidermis. Fbp1 heterozygous mice exhibit aberrant epidermis phenotypes with local hyperplasia and dedifferentiation. Loss of FBP1 promotes proliferation and inhibits differentiation of keratinocytes in vitro. Mechanistically, FBP1 loss facilitates glycolysis-mediated acetyl-CoA production, which increases histone H3 acetylation at lysine 9, resulting in enhanced transcription of proliferation genes. We further find that the expression of FBP1 is dramatically reduced in human psoriatic lesions and in skin of mouse imiquimod psoriasis model. Fbp1 deficiency in mice facilitates psoriasis-like skin lesions development through glycolysis and acetyl-CoA production. Collectively, our findings reveal a previously unrecognized role of FBP1 in epidermal homeostasis and provide evidence for FBP1 as a metabolic psoriasis suppressor.


Assuntos
Diferenciação Celular , Proliferação de Células , Frutose-Bifosfatase , Histonas , Queratinócitos , Psoríase , Animais , Humanos , Camundongos , Acetilcoenzima A/metabolismo , Acetilação , Modelos Animais de Doenças , Frutose-Bifosfatase/metabolismo , Frutose-Bifosfatase/genética , Glicólise , Histonas/metabolismo , Queratinócitos/metabolismo , Queratinócitos/patologia , Camundongos Endogâmicos C57BL , Psoríase/patologia , Psoríase/metabolismo , Psoríase/genética
9.
J Ethnopharmacol ; 334: 118463, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38908493

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Wutou Decoction (WTD) is a classic traditional Chinese medicine formula, which has shown clinical efficacy in treating rheumatoid arthritis (RA). The Treg stability and Th17/Treg imbalance is an important immunological mechanism in RA progression. Whether WTD regulates CD4+ T cell subsets has not been thoroughly investigated yet. AIM OF THE STUDY: This study aimed to explore the potential role and mechanisms of WTD in regulating the diminished stability of Treg cells and the imbalance of CD4+ T cell subsets via in vivo and in vitro experiments. MATERIALS AND METHODS: Firstly, the therapeutic effects of WTD on the collagen-induced arthritis (CIA) mouse and its potential regulatory function on CD4+ T cell subsets were evaluated in vivo. Animal specimens were collected after 31 days of treatment with WTD. The anti-arthritic and anti-inflammatory effects of WTD were assessed through arthritis scoring, body weight, spleen index, serum IL-6 levels, and micro-PET/CT imaging. Gene enrichment analysis was performed to evaluate the activation T cell-related signaling pathway. Flow cytometry was used to determine the proportions of CD4+ T cell subsets in vitro and in vitro. Additionally, ELISA was used to assess the secretion of IL-10 and TGF-ß by Treg cells under inflammatory conditions. The suppressive function of Treg cells on cell proliferation under inflammatory conditions was examined using CFSE labeling. Immunofluorescence staining was performed to detect the phosphorylation levels of STAT3 in CD4+ T cells from mouse spleen tissues. Western blotting was used to evaluate the phosphorylation levels of JAK2/STAT3 in Treg cells. RESULTS: WTD significantly alleviated joint inflammation in CIA mice. WTD reduced serum IL-6 levels in CIA mice, improved their body weight and spleen index. WTD treatment inhibited the activation of CD4+ T cell subgroup-related signaling in the joint tissues of CIA mice. In vitro and in vitro experiments showed that WTD increased the proportion of Treg cells and decreased the proportion of Th17 cells in CIA mice spleen. Furthermore, WTD promoted the secretion of IL-10 and TGF-ß by Treg cells and enhanced the inhibitory capacity of Treg cells on cell proliferation under inflammatory conditions. Immunofluorescence detected decreased STAT3 phosphorylation levels in CD4+ T cells from CIA mice spleen, while western blotting revealed a decrease in JAK2/STAT3 phosphorylation levels in Treg cells in vitro. CONCLUSIONS: Inhibiting JAK2/STAT3 phosphorylation is a potential mechanism through which WTD improves Treg cell stability, balances CD4+ T cell subsets, and attenuates RA joint inflammation.


Assuntos
Artrite Experimental , Medicamentos de Ervas Chinesas , Janus Quinase 2 , Camundongos Endogâmicos DBA , Fator de Transcrição STAT3 , Transdução de Sinais , Linfócitos T Reguladores , Células Th17 , Animais , Fator de Transcrição STAT3/metabolismo , Artrite Experimental/tratamento farmacológico , Artrite Experimental/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Janus Quinase 2/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Masculino , Transdução de Sinais/efeitos dos fármacos , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
10.
BMC Gastroenterol ; 24(1): 200, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886630

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD), a chronic inflammatory condition, is caused by several factors involving aberrant immune responses. Genetic factors are crucial in IBD occurrence. Mendelian randomization (MR) can offer a new perspective in understanding IBD's genetic background. METHODS: Single nucleotide polymorphisms (SNPs) were considered instrumental variables (IVs). We analyzed the relationship between 731 immunophenotypes, 1,400 metabolite phenotypes, and IBD. The total effect was decomposed into indirect and direct effects, and the ratio of the indirect effect to the total effect was calculated. RESULTS: We identified the causal effects of HLA-DR-expressing CD14 + monocytes on IBD through MR analysis. The phenotype "HLA-DR expression on CD14 + monocytes" showed the strongest association among the selected 48 immune phenotypes. Chiro-inositol metabolites mediated the effect of CD14 + monocytes expressing HLA-DR on IBD. An increase in Chiro-inositol metabolites was associated with a reduced risk of IBD occurrence, accounting for 4.97%. CONCLUSION: Our findings revealed a new pathway by which HLA-DR-expressing CD14 + monocytes indirectly reduced the risk of IBD occurrence by increasing the levels of Chiro-inositol metabolites. The results provided a new perspective on the immunoregulatory mechanisms underlying IBD, laying a theoretical foundation for developing new therapeutic targets in the future.


Assuntos
Antígenos HLA-DR , Doenças Inflamatórias Intestinais , Inositol , Receptores de Lipopolissacarídeos , Monócitos , Polimorfismo de Nucleotídeo Único , Humanos , Monócitos/metabolismo , Monócitos/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Antígenos HLA-DR/genética , Antígenos HLA-DR/metabolismo , Inositol/metabolismo , Análise da Randomização Mendeliana , Fenótipo , Imunofenotipagem , Feminino , Masculino
11.
Int Immunopharmacol ; 136: 112296, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38810310

RESUMO

Acetaminophen (APAP) is a widely used antipyretic and analgesic medication, but its overdose can induce acute liver failure with lack of effective therapies. Icariin is a bioactive compound derived from the herb Epimedium that displays hepatoprotective activities. Here, we explored the protective effects and mechanism of icariin on APAP-induced hepatotoxicity. Icariin (25/50 mg/kg) or N-Acetylcysteine (NAC, 300 mg/kg) were orally administered in wild-type C57BL/6 mice for 7 consecutive days before the APAP administration. Icariin attenuated APAP-induced acute liver injury in mice, as measured by alleviated serum enzymes activities and hepatic apoptosis. In vitro, icariin pretreatment significantly inhibited hepatocellular damage and apoptosis by reducing the BAX/Bcl-2 ratio as well as the expression of cleaved-caspase 3 and cleaved-PARP depended on the p53 pathway. Moreover, icariin attenuated APAP-mediated inflammatory response and oxidative stress via the Nrf2 and NF-κB pathways. Importantly, icariin reduced the expression of S100A9, icariin interacts with S100A9 as a direct cellular target, which was supported by molecular dynamics simulation and surface plasmon resonance assay (equilibrium dissociation constant, KD = 1.14 µM). In addition, the genetic deletion and inhibition of S100A9 not only alleviated APAP-induced injury but also reduced the icariin's protective activity in APAP-mediated liver injury. These data indicated that icariin targeted S100A9 to alleviate APAP-induced liver damage via the following signaling pathways NF-κB, p53, and Nrf2.


Assuntos
Acetaminofen , Calgranulina B , Doença Hepática Induzida por Substâncias e Drogas , Flavonoides , Camundongos Endogâmicos C57BL , Animais , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Masculino , Camundongos , Calgranulina B/metabolismo , Calgranulina B/genética , Apoptose/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética
12.
Nat Commun ; 15(1): 3187, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622116

RESUMO

Transcription is crucial for the expression of genetic information and its efficient and accurate termination is required for all living organisms. Rho-dependent termination could rapidly terminate unwanted premature RNAs and play important roles in bacterial adaptation to changing environments. Although Rho has been discovered for about five decades, the regulation mechanisms of Rho-dependent termination are still not fully elucidated. Here we report that Rof is a conserved antiterminator and determine the cryogenic electron microscopy structure of Rho-Rof antitermination complex. Rof binds to the open-ring Rho hexamer and inhibits the initiation of Rho-dependent termination. Rof's N-terminal α-helix undergoes conformational changes upon binding with Rho, and is key in facilitating Rof-Rho interactions. Rof binds to Rho's primary binding site (PBS) and excludes Rho from binding with PBS ligand RNA at the initiation step. Further in vivo analyses in Salmonella Typhimurium show that Rof is required for virulence gene expression and host cell invasion, unveiling a physiological function of Rof and transcription termination in bacterial pathogenesis.


Assuntos
Fator Rho , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Virulência/genética , Fator Rho/genética , Fator Rho/metabolismo , Regulação Bacteriana da Expressão Gênica , Transcrição Gênica , Bactérias/genética , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
13.
J Ethnopharmacol ; 327: 117986, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437887

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Renal interstitial fibrosis (RIF) is a main pathological process in chronic kidney disease (CKD). Demethylzeylasteral (DML), a major component of Tripterygium wilfordii Hook. f., has anti-renal fibrosis effects. However, its mechanism of action remains incompletely understood. AIM OF THE STUDY: The present study was designed to comprehensively examine the effects of DML on RIF and the underlying mechanisms. MATERIALS AND METHODS: Pathological experiments were performed to determine the therapeutic effect of DML on a mouse model of UUO-induced RIF. To determine the novel mechanisms underlying the therapeutic effects of DML against RIF, a comprehensive transcriptomics analysis was performed on renal tissues, which was further verified by a series of experiments. RESULTS: Pathological and immunohistochemical staining showed that DML inhibited UUO-induced renal damage and reduced the expression of fibrosis-related proteins in mice. Transcriptomic analysis revealed that the partial subunits of mitochondrial complex (MC) I and II may be targets by which DML protects against RIF. Furthermore, DML treatment reduced mitochondrial reactive oxygen species (ROS) levels, consequently promoting ATP production and mitigating oxidative stress-induced injury in mice and cells. Notably, this protective effect was attributed to the inhibition of MC I activity, suggesting a crucial role for this specific complex in mediating the therapeutic effects of DML against RIF. CONCLUSIONS: This study provides compelling evidence that DML may be used to treat RIF by effectively suppressing mitochondrial oxidative stress injury mediated by MC I. These findings offer valuable insights into the pharmacological mechanisms of DML and its potential clinical application for patients with CKD.


Assuntos
Nefropatias , Insuficiência Renal Crônica , Triterpenos , Obstrução Ureteral , Humanos , Camundongos , Animais , Nefropatias/tratamento farmacológico , Nefropatias/prevenção & controle , Nefropatias/metabolismo , Rim , Insuficiência Renal Crônica/metabolismo , Estresse Oxidativo , Fibrose , Obstrução Ureteral/metabolismo
14.
Phytomedicine ; 128: 155419, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522314

RESUMO

BACKGROUND: Disturbance of the blood‒brain barrier (BBB) and associated inflammatory responses are observed in patients with hepatic encephalopathy (HE) and can cause long-term complications. Dahuang-Wumei decoction (DWD) is a renowned traditional Chinese herbal medicine with a long history of clinical use and has been widely employed as an effective treatment for hepatic encephalopathy (HE). Despite its established efficacy, the precise mechanisms underlying the therapeutic effects of DWD have not been fully elucidated. PURPOSE: The present study aimed to comprehensively explore the potential effects and underlying molecular mechanisms of DWD on HE through an integrated investigation that included both in vivo and in vitro experiments. METHODS: In the present study, carbon tetrachloride (CCl4) and thioacetamide (TAA) were used to establish an HE model in mice. The therapeutic effects of DWD on liver injury, fibrosis, brain injury, behaviour, and consciousness disorders were evaluated in vivo. C8-D1A and bEnd.3 cells were used to construct a BBB model in vitro. The effects of DWD on proinflammatory factor expression, BBB damage and the Wnt/ß-catenin pathway were detected in vivo and in vitro. RESULTS: Our results showed that DWD can improve liver injury and fibrosis and brain damage and inhibit neurofunctional and behavioural disorders in mice with HE. Afterwards, we found that DWD decreased the levels of proinflammatory factors and suppressed BBB disruption by increasing the levels of junction proteins in vivo and vitro. Further studies verified that the Wnt/ß-catenin pathway may play a pivotal role in mediating the inhibitory effect of DWD on HE. CONCLUSION: These results demonstrated that DWD can treat HE by preventing BBB disruption, and the underlying mechanisms involved were associated with the activation of the Wnt/ß-catenin pathway and the inhibition of inflammatory responses.


Assuntos
Barreira Hematoencefálica , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Encefalopatia Hepática , Tioacetamida , Via de Sinalização Wnt , Animais , Medicamentos de Ervas Chinesas/farmacologia , Encefalopatia Hepática/tratamento farmacológico , Masculino , Via de Sinalização Wnt/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Camundongos , Tetracloreto de Carbono , Linhagem Celular , Camundongos Endogâmicos C57BL
15.
Heliyon ; 10(3): e24746, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38318012

RESUMO

Objective: Half of the patients with acute large artery occlusion (LAO) have poor outcomes after endovascular treatment (EVT). Early complications such as cerebral edema and symptomatic intracranial hemorrhage (sICH) can lead to early neurological deterioration (END), which correlates with hemodynamics. This study aimed to identify the hemodynamic predictors of END and outcomes in LAO patients after EVT. Methods: A total of 76 patients with anterior circulation LAO who underwent EVT and received transcranial Doppler (TCD) monitoring were included. Bilateral middle cerebral artery (MCA) blood flow velocities (BFVs) were measured repeatedly within 1 week. Mean flow velocities (MFV) and MFV index (ipsilateral MFV/contralateral MFV) were calculated. The primary outcome was the incidence of END within 72 h. The secondary outcome was the functional outcome at 90 days-a good outcome was defined as a modified Rankin scale (mRS) score of 0-2, while a poor outcome was defined as an mRS score of 3-6. Results: A total of 13 patients (17.1 %) experienced END within 72 h, including 5 (38.5 %) with cerebral edema, 5 (38.5 %) with sICH, and 3 (23.0 %) with infarct progression. Multivariable logistic regression analysis showed that a higher 24 h MFV index was independently associated with END (aOR 10.5; 95 % CI 2.28-48.30, p = 0.003) and a poor 90-day outcome (aOR 5.10; 95 % CI 1.38-18.78, p = 0.014). The area under the receiver operating characteristic (ROC) curve (AUC) of the 24 h MFV index for predicting END was 0.807 (95 % CI 0.700-0.915, p = 0.0005), the sensitivity was 84.6 %, and the specificity was 66.7 %. At the 1-week TCD follow-up, patients who had poor 90-day outcomes showed significantly higher 1-week iMFV [73.5 (58.4-99.0) vs. 57.7 (45.3-76.3), p = 0.004] and MFV index [1.24 (0.98-1.57) vs.1.0 (0.87-1.15) p = 0.007]. A persistent high MFV index (PHMI) was independently associated with a poor outcome (aOR 7.77, 95 % CI 1.81-33.3, p = 0.006). Conclusion: TCD monitoring within 24 h after EVT in LAO patients can help predict END, while dynamic follow-up within 1 week is valuable in predicting clinical outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA