Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
J Phys Chem B ; 112(20): 6398-410, 2008 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-18444674

RESUMO

The liquid structures of nonaqueous electrolytes composed of lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) and acetamide, with LiTFSI/acetamide molar ratios of 1:2, 1:4, and 1:6, were studied by molecular dynamics simulations. The simulations indicate that the Li+ cations prefer to be six-coordinate by the sulfonyl oxygen atoms of the TFSI- anions and the carbonyl oxygen atoms of the acetamide molecules, rather than by the most electronegative nitrogen atom of the TFSI- anion. Therefore, close Li+-TFSI- contact pairs exist in the system. The TFSI- anion prefers to provide only one of four possible oxygen atoms to coordinate to the same Li+ cation. Three conformations (cis, trans, and gauche) of the TFSI- anions were found to coexist in the liquid electrolyte. At high salt concentrations, the TFSI- anions mainly adopt the gauche conformation in order to provide more oxygen atoms to coordinate to different Li+ cations, while simultaneously reducing the repulsion among the Li+ cations. On the other hand, the fraction of TFSI- anions adopting the cis conformation is largest for the system with the molar ratio of 1:6, in which many clusters, mainly composed of the Li+ cations and the TFSI- anions, are immersed in the acetamide molecules. The size and charge distribution of clusters were also investigated. In the system with the molar ratio of 1:2, nearly all of the ions in the PBC (periodic boundary conditions) box aggregate into a bulky cluster that gradually disassembles into small clusters with decreasing salt concentration. The addition of acetamide molecules was found to effectively relax the liquid electrolyte structure, and the system with the molar ratio of 1:4 was found to exhibit a more homogeneous liquid structure than the other two electrolyte systems with molar ratios of 1:2 and 1:6.

3.
Biophys Chem ; 109(2): 281-93, 2004 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15110946

RESUMO

Two inhibitor-containing 'half-sandwich' cobalt(II) complexes [(TpPh)Co(X)(CH3OH)m] x nCH3OH ((TpPh) = hydrotris (3-phenylpyrazolyl)borate; 1: X- = N3-, m = 1, n = 2; 2: X- = NCS-, m = 0, n = 0) have been synthesized and used as the catalysts in the bicarbonate dehydration reaction. The structures of 1 and 2 were determined by X-ray diffraction analysis, which shows that N3- and NCS- coordinate to the Co(II) ions of 1 and 2, respectively, with the Co-N bond lengths of 1.992(6) A and 1.901(3) A. The coordination geometries of the Co(II) complexes in solution are five-coordinated trigonal bipyramid as revealed by the spectroscopic measurements. The dehydration kinetic measurements of HCO3- are performed by the stopped-flow techniques at pH < 7.9. The apparent dehydration rate constant k(obs) varies linearly with Co(II) complex and H+ concentrations, respectively, and the catalytic activity of 2 is lower than that of 1. The aqua Co(II) complex must be the reactive catalytic species in the catalyzed dehydration reaction and the rate-determining step is the substitution of the labile water molecule by HCO3-. The k(obs) values increase with increasing reaction temperature, and the large negative entropy of activation also indicates the associative activation mode. The inhibition ability of NCS- is stronger than that of N3-, which can be rationalized by the decreases in the Co-N(N3-/NCS-) bond lengths and effective atomic charges of the Co(II) ions based on the X-ray crystallographic data and theoretical calculations in this work.


Assuntos
Bicarbonatos/química , Dióxido de Carbono/química , Compostos Organometálicos/química , Água/química , Azidas/química , Sítios de Ligação , Boratos/química , Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Catálise , Cobalto/química , Cristalografia por Raios X , Cinética , Conformação Molecular , Compostos Organometálicos/síntese química , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Tiocianatos/química
4.
Inorg Chem ; 42(2): 508-15, 2003 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-12693233

RESUMO

A series of half-sandwich copper(II) complexes [TpPh]CuX ([TpPh] = hydrotris(3-phenyl-pyrazolyl)borate; X- = OH- (1), N3- (2), NCS- (3)) have been synthesized as models for carbonic anhydrase. The structure of 3 was determined by X-ray diffraction analysis. Crystals of 3 (C37H30BCuN9S) are triclinic, space group P1 with a = 11.997(3) A, b = 12.116(3) A, c = 13.384(4) A, alpha = 81.088(5) degrees, beta = 79.289(6) degrees, gamma = 68.668(5) degrees, V = 1772.4(8) A3, and Z = 2. The dehydration kinetic measurements of HCO3- are performed by the stopped-flow techniques at pH < 7.9. The apparent dehydration rate constant kdobs varies linearly with total Cu(II) concentration, and the catalytic activity of the model complexes decreases in the order 1 > 2 > 3. The catalytic activity decreases with increasing pH indicating that the aqua model complex must be the reactive catalytic species in the catalyzed dehydration reaction and the rate-determining step is the substitution of the labile water molecule by HCO3-. The kdobs values increase with increasing reaction temperature, and the apparent activation energies of the model complexes with inhibitors are remarkably higher than that of the complex with no inhibitors, this being the origin of inhibition. The large negative entropy of activation also indicates an associative mode of activation in the rate-determining step. The inhibition ability of the inhibitor NCS- is stronger than that of the inhibitor N3-, which can be rationalized by the decrease in effective atomic charges of the Cu(II) ions as revealed by the theoretical calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA