Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
STAR Protoc ; 5(2): 103116, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38848218

RESUMO

The chaperonin CCT mediates folding of many cytosolic proteins, including G protein ß subunits (Gßs). Here, we present a protocol for isolating Gß5 bound to CCT and its co-chaperone PhLP1 and determining the CCT-mediated folding trajectory of Gß5 using single-particle cryoelectron microscopy (cryo-EM) techniques. We describe steps for purifying CCT-Gß5-PhLP1 from human cells, stabilizing the closed CCT conformation, preparing and imaging cryo-EM specimens, and processing data to recover multiple Gß5 folding intermediates. This protocol permits visualization of protein folding by CCT. For complete details on the use and execution of this protocol, please refer to Sass et al.1.


Assuntos
Chaperonina com TCP-1 , Microscopia Crioeletrônica , Dobramento de Proteína , Microscopia Crioeletrônica/métodos , Humanos , Chaperonina com TCP-1/metabolismo , Chaperonina com TCP-1/química
2.
Elife ; 132024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747717

RESUMO

Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1's helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , RNA de Cadeia Dupla , Ribonuclease III , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , RNA de Cadeia Dupla/metabolismo , Ribonuclease III/metabolismo , Ribonuclease III/química , Ribonuclease III/genética , Microscopia Crioeletrônica , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , RNA Helicases/metabolismo , RNA Helicases/genética , RNA Helicases/química , Ligação Proteica , Trifosfato de Adenosina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/química
3.
Nat Commun ; 15(1): 1165, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326311

RESUMO

The t(X,17) chromosomal translocation, generating the ASPSCR1::TFE3 fusion oncoprotein, is the singular genetic driver of alveolar soft part sarcoma (ASPS) and some Xp11-rearranged renal cell carcinomas (RCCs), frustrating efforts to identify therapeutic targets for these rare cancers. Here, proteomic analysis identifies VCP/p97, an AAA+ ATPase with known segregase function, as strongly enriched in co-immunoprecipitated nuclear complexes with ASPSCR1::TFE3. We demonstrate that VCP is a likely obligate co-factor of ASPSCR1::TFE3, one of the only such fusion oncoprotein co-factors identified in cancer biology. Specifically, VCP co-distributes with ASPSCR1::TFE3 across chromatin in association with enhancers genome-wide. VCP presence, its hexameric assembly, and its enzymatic function orchestrate the oncogenic transcriptional signature of ASPSCR1::TFE3, by facilitating assembly of higher-order chromatin conformation structures demonstrated by HiChIP. Finally, ASPSCR1::TFE3 and VCP demonstrate co-dependence for cancer cell proliferation and tumorigenesis in vitro and in ASPS and RCC mouse models, underscoring VCP's potential as a novel therapeutic target.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Camundongos , Humanos , Proteômica , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Translocação Genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Neoplasias Renais/genética , Cromatina/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Cromossomos Humanos X/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína com Valosina/genética
4.
bioRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37790392

RESUMO

Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, C. elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1's helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.

5.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873234

RESUMO

The t(X,17) chromosomal translocation, generating the ASPSCR1-TFE3 fusion oncoprotein, is the singular genetic driver of alveolar soft part sarcoma (ASPS) and some Xp11-rearranged renal cell carcinomas (RCC), frustrating efforts to identify therapeutic targets for these rare cancers. Proteomic analysis showed that VCP/p97, an AAA+ ATPase with known segregase function, was strongly enriched in co-immunoprecipitated nuclear complexes with ASPSCR1-TFE3. We demonstrate that VCP is a likely obligate co-factor of ASPSCR1-TFE3, one of the only such fusion oncoprotein co-factors identified in cancer biology. Specifically, VCP co-distributed with ASPSCR1-TFE3 across chromatin in association with enhancers genome-wide. VCP presence, its hexameric assembly, and its enzymatic function orchestrated the oncogenic transcriptional signature of ASPSCR1-TFE3, by facilitating assembly of higher-order chromatin conformation structures as demonstrated by HiChIP. Finally, ASPSCR1-TFE3 and VCP demonstrated co-dependence for cancer cell proliferation and tumorigenesis in vitro and in ASPS and RCC mouse models, underscoring VCP's potential as a novel therapeutic target.

6.
Mol Cell ; 83(21): 3852-3868.e6, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37852256

RESUMO

The Chaperonin Containing Tailless polypeptide 1 (CCT) complex is an essential protein folding machine with a diverse clientele of substrates, including many proteins with ß-propeller domains. Here, we determine the structures of human CCT in complex with its accessory co-chaperone, phosducin-like protein 1 (PhLP1), in the process of folding Gß5, a component of Regulator of G protein Signaling (RGS) complexes. Cryoelectron microscopy (cryo-EM) and image processing reveal an ensemble of distinct snapshots that represent the folding trajectory of Gß5 from an unfolded molten globule to a fully folded ß-propeller. These structures reveal the mechanism by which CCT directs Gß5 folding through initiating specific intermolecular contacts that facilitate the sequential folding of individual ß sheets until the propeller closes into its native structure. This work directly visualizes chaperone-mediated protein folding and establishes that CCT orchestrates folding by stabilizing intermediates through interactions with surface residues that permit the hydrophobic core to coalesce into its folded state.


Assuntos
Proteínas de Ligação ao GTP , Chaperonas Moleculares , Humanos , Microscopia Crioeletrônica , Chaperonas Moleculares/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Dobramento de Proteína , Transdução de Sinais , Chaperoninas
7.
bioRxiv ; 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37205387

RESUMO

The cytosolic Chaperonin Containing Tailless polypeptide 1 (CCT) complex is an essential protein folding machine with a diverse clientele of substrates, including many proteins with ß-propeller domains. Here, we determined structures of CCT in complex with its accessory co-chaperone, phosducin-like protein 1 (PhLP1), in the process of folding Gß5, a component of Regulator of G protein Signaling (RGS) complexes. Cryo-EM and image processing revealed an ensemble of distinct snapshots that represent the folding trajectory of Gß5 from an unfolded molten globule to a fully folded ß-propeller. These structures reveal the mechanism by which CCT directs Gß5 folding through initiating specific intermolecular contacts that facilitate the sequential folding of individual ß-sheets until the propeller closes into its native structure. This work directly visualizes chaperone-mediated protein folding and establishes that CCT directs folding by stabilizing intermediates through interactions with surface residues that permit the hydrophobic core to coalesce into its folded state.

8.
Bio Protoc ; 13(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36789166

RESUMO

Single-particle electron cryo-microscopy (cryo-EM) is an effective tool to determine high-resolution structures of macromolecular complexes. Its lower requirements for sample concentration and purity make it an accessible method to determine structures of low-abundant protein complexes, such as those isolated from native sources. While there are many approaches to protein purification for cryo-EM, attaining suitable particle quality and abundance is generally the major bottleneck to the typical single-particle project workflow. Here, we present a protocol using budding yeast ( S. cerevisiae ), in which a tractable immunoprecipitation tag (3xFLAG) is appended at the endogenous locus of a gene of interest (GOI). The modified gene is expressed under its endogenous promoter, and cells are grown and harvested using standard procedures. Our protocol describes the steps in which the tagged proteins and their associated complexes are isolated within three hours of thawing cell lysates, after which the recovered proteins are used directly for cryo-EM specimen preparation. The prioritization of speed maximizes the ability to recover intact, scarce complexes. The protocol is generalizable to soluble yeast proteins that tolerate C-terminal epitope tags. Graphical abstract Overview of lysate-to-grid workflow. Yeast cells are transformed to express a tractable tag on a gene of interest. Following cell culture and lysis, particles of interest are rapidly isolated by co-immunoprecipitation and prepared for cryo-EM imaging (created with BioRender.com).

9.
bioRxiv ; 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38654823

RESUMO

The Cdc48 AAA+ ATPase is an abundant and essential enzyme that unfolds substrates in multiple protein quality control pathways. The enzyme includes two conserved AAA+ ATPase cassettes, D1 and D2, that assemble as hexameric rings with D1 stacked above D2. Here, we report an ensemble of structures of Cdc48 affinity purified from lysate in complex with the adaptor Shp1 in the act of unfolding substrate. Our analysis reveals a continuum of structural snapshots that spans the entire translocation cycle. These data reveal new elements of Shp1-Cdc48 binding and support a "hand-over-hand" mechanism in which the sequential movement of individual subunits is closely coordinated. D1 hydrolyzes ATP and disengages from substrate prior to D2, while D2 rebinds ATP and re-engages with substrate prior to D1, thereby explaining the dominant role played by D2 in substrate translocation/unfolding.

10.
Nat Commun ; 13(1): 2640, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35552390

RESUMO

The p97 AAA+ATPase is an essential and abundant regulator of protein homeostasis that plays a central role in unfolding ubiquitylated substrates. Here we report two cryo-EM structures of human p97 in complex with its p47 adaptor. One of the conformations is six-fold symmetric, corresponds to previously reported structures of p97, and lacks bound substrate. The other structure adopts a helical conformation, displays substrate running in an extended conformation through the pore of the p97 hexamer, and resembles structures reported for other AAA unfoldases. These findings support the model that p97 utilizes a "hand-over-hand" mechanism in which two residues of the substrate are translocated for hydrolysis of two ATPs, one in each of the two p97 AAA ATPase rings. Proteomics analysis supports the model that one p97 complex can bind multiple substrate adaptors or binding partners, and can process substrates with multiple types of ubiquitin modification.


Assuntos
Chaperonas Moleculares , Ubiquitina , Humanos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Conformação Proteica , Ubiquitina/metabolismo , Proteína com Valosina/metabolismo
11.
Cell Rep ; 36(10): 109663, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496247

RESUMO

Although the roles of initiation factors, RNA binding proteins, and RNA elements in regulating translation are well defined, how the ribosome functionally diversifies remains poorly understood. In their human hosts, poxviruses phosphorylate serine 278 (S278) at the tip of a loop domain in the small subunit ribosomal protein RACK1, thereby mimicking negatively charged residues in the RACK1 loops of dicot plants and protists to stimulate translation of transcripts with 5' poly(A) leaders. However, how a negatively charged RACK1 loop affects ribosome structure and its broader translational output is not known. Here, we show that although ribotoxin-induced stress signaling and stalling on poly(A) sequences are unaffected, negative charge in the RACK1 loop alters the swivel motion of the 40S head domain in a manner similar to several internal ribosome entry sites (IRESs), confers resistance to various protein synthesis inhibitors, and broadly supports noncanonical modes of translation.


Assuntos
Proteínas de Neoplasias/metabolismo , Receptores de Quinase C Ativada/metabolismo , Ribossomos/metabolismo , Humanos , Modelos Moleculares , Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas/fisiologia , Subunidades Ribossômicas Menores de Eucariotos/metabolismo
13.
Science ; 365(6452): 502-505, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31249134

RESUMO

The cellular machine Cdc48 functions in multiple biological pathways by segregating its protein substrates from a variety of stable environments such as organelles or multi-subunit complexes. Despite extensive studies, the mechanism of Cdc48 has remained obscure, and its reported structures are inconsistent with models of substrate translocation proposed for other AAA+ ATPases (adenosine triphosphatases). Here, we report a 3.7-angstrom-resolution structure of Cdc48 in complex with an adaptor protein and a native substrate. Cdc48 engages substrate by adopting a helical configuration of substrate-binding residues that extends through the central pore of both of the ATPase rings. These findings indicate a unified hand-over-hand mechanism of protein translocation by Cdc48 and other AAA+ ATPases.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas de Saccharomyces cerevisiae/química , Proteína com Valosina/química , Microscopia Crioeletrônica , Imunoprecipitação , Domínios Proteicos , Especificidade por Substrato
14.
Elife ; 82019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31184588

RESUMO

Many AAA+ ATPases form hexamers that unfold protein substrates by translocating them through their central pore. Multiple structures have shown how a helical assembly of subunits binds a single strand of substrate, and indicate that translocation results from the ATP-driven movement of subunits from one end of the helical assembly to the other end. To understand how more complex substrates are bound and translocated, we demonstrated that linear and cyclic versions of peptides bind to the S. cerevisiae AAA+ ATPase Vps4 with similar affinities, and determined cryo-EM structures of cyclic peptide complexes. The peptides bind in a hairpin conformation, with one primary strand equivalent to the single chain peptide ligands, while the second strand returns through the translocation pore without making intimate contacts with Vps4. These observations indicate a general mechanism by which AAA+ ATPases may translocate a variety of substrates that include extended chains, hairpins, and crosslinked polypeptide chains.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Adenosina Trifosfatases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Peptídeos Cíclicos/metabolismo , Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/genética , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Ligação Competitiva , Microscopia Crioeletrônica , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos , Modelos Moleculares , Peptídeos/química , Peptídeos Cíclicos/química , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
15.
Nat Commun ; 9(1): 2197, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875445

RESUMO

Eukaryotic cells employ the ribosome-associated quality control complex (RQC) to maintain homeostasis despite defects that cause ribosomes to stall. The RQC comprises the E3 ubiquitin ligase Ltn1p, the ATPase Cdc48p, Rqc1p, and Rqc2p. Upon ribosome stalling and splitting, the RQC assembles on the 60S species containing unreleased peptidyl-tRNA (60S:peptidyl-tRNA). Ltn1p and Rqc1p facilitate ubiquitination of the incomplete nascent chain, marking it for degradation. Rqc2p stabilizes Ltn1p on the 60S and recruits charged tRNAs to the 60S to catalyze elongation of the nascent protein with carboxy-terminal alanine and threonine extensions (CAT tails). By mobilizing the nascent chain, CAT tailing can expose lysine residues that are hidden in the exit tunnel, thereby supporting efficient ubiquitination. If the ubiquitin-proteasome system is overwhelmed or unavailable, CAT-tailed nascent chains can aggregate in the cytosol or within organelles like mitochondria. Here we identify Vms1p as a tRNA hydrolase that releases stalled polypeptides engaged by the RQC.


Assuntos
Proteínas de Transporte/genética , Biossíntese de Proteínas/genética , Subunidades Ribossômicas Maiores de Eucariotos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Controle de Qualidade , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/metabolismo
16.
Anal Bioanal Chem ; 410(8): 2053-2057, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29423601

RESUMO

The 2017 Nobel Prize in Chemistry was awarded to Jacques Dubochet, Joachim Frank, and Richard Henderson for "developing cryo-electron microscopy (cryo-EM) for the high-resolution structure determination of biomolecules in solution." This feature article summarizes some of the major achievements leading to the development of cryo-EM and recent technological breakthroughs that have transformed the method into a mainstream tool for structure determination.


Assuntos
Microscopia Crioeletrônica/métodos , Prêmio Nobel , Animais , Microscopia Crioeletrônica/história , História do Século XX , História do Século XXI , Humanos , Microscopia Eletrônica de Transmissão/história , Microscopia Eletrônica de Transmissão/métodos , Modelos Moleculares , Proteínas/ultraestrutura , Ribossomos/ultraestrutura
17.
Science ; 359(6373): 329-334, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29269422

RESUMO

Invertebrates rely on Dicer to cleave viral double-stranded RNA (dsRNA), and Drosophila Dicer-2 distinguishes dsRNA substrates by their termini. Blunt termini promote processive cleavage, while 3' overhanging termini are cleaved distributively. To understand this discrimination, we used cryo-electron microscopy to solve structures of Drosophila Dicer-2 alone and in complex with blunt dsRNA. Whereas the Platform-PAZ domains have been considered the only Dicer domains that bind dsRNA termini, unexpectedly, we found that the helicase domain is required for binding blunt, but not 3' overhanging, termini. We further showed that blunt dsRNA is locally unwound and threaded through the helicase domain in an adenosine triphosphate-dependent manner. Our studies reveal a previously unrecognized mechanism for optimizing antiviral defense and set the stage for the discovery of helicase-dependent functions in other Dicers.


Assuntos
Proteínas de Drosophila/química , RNA Helicases/química , RNA de Cadeia Dupla/química , Ribonuclease III/química , Trifosfato de Adenosina/química , Animais , Microscopia Crioeletrônica , Proteínas de Drosophila/ultraestrutura , Ligação Proteica , Estrutura Terciária de Proteína , Clivagem do RNA , RNA Helicases/ultraestrutura , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , RNA Viral/química , RNA Viral/metabolismo , Ribonuclease III/ultraestrutura , Especificidade por Substrato
18.
Elife ; 62017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29165244

RESUMO

The hexameric AAA ATPase Vps4 drives membrane fission by remodeling and disassembling ESCRT-III filaments. Building upon our earlier 4.3 Å resolution cryo-EM structure (Monroe et al., 2017), we now report a 3.2 Å structure of Vps4 bound to an ESCRT-III peptide substrate. The new structure reveals that the peptide approximates a ß-strand conformation whose helical symmetry matches that of the five Vps4 subunits it contacts directly. Adjacent Vps4 subunits make equivalent interactions with successive substrate dipeptides through two distinct classes of side chain binding pockets formed primarily by Vps4 pore loop 1. These pockets accommodate a wide range of residues, while main chain hydrogen bonds may help dictate substrate-binding orientation. The structure supports a 'conveyor belt' model of translocation in which ATP binding allows a Vps4 subunit to join the growing end of the helix and engage the substrate, while hydrolysis and release promotes helix disassembly and substrate release at the lagging end.


Assuntos
Adenosina Trifosfatases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Microscopia Crioeletrônica , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química
19.
Elife ; 62017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28933693

RESUMO

Dynamin, which mediates membrane fission during endocytosis, binds endophilin and other members of the Bin-Amphiphysin-Rvs (BAR) protein family. How endophilin influences endocytic membrane fission is still unclear. Here, we show that dynamin-mediated membrane fission is potently inhibited in vitro when an excess of endophilin co-assembles with dynamin around membrane tubules. We further show by electron microscopy that endophilin intercalates between turns of the dynamin helix and impairs fission by preventing trans interactions between dynamin rungs that are thought to play critical roles in membrane constriction. In living cells, overexpression of endophilin delayed both fission and transferrin uptake. Together, our observations suggest that while endophilin helps shape endocytic tubules and recruit dynamin to endocytic sites, it can also block membrane fission when present in excess by inhibiting inter-dynamin interactions. The sequence of recruitment and the relative stoichiometry of the two proteins may be critical to regulated endocytic fission.


Assuntos
Aciltransferases/metabolismo , Dinamina I/metabolismo , Endocitose , Membranas/efeitos dos fármacos , Aciltransferases/química , Animais , Dinamina I/química , Humanos , Microscopia Eletrônica , Conformação Proteica , Ratos
20.
Elife ; 62017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28379137

RESUMO

Many important cellular membrane fission reactions are driven by ESCRT pathways, which culminate in disassembly of ESCRT-III polymers by the AAA ATPase Vps4. We report a 4.3 Å resolution cryo-EM structure of the active Vps4 hexamer with its cofactor Vta1, ADP·BeFx, and an ESCRT-III substrate peptide. Four Vps4 subunits form a helix whose interfaces are consistent with ATP binding, is stabilized by Vta1, and binds the substrate peptide. The fifth subunit approximately continues this helix but appears to be dissociating. The final Vps4 subunit completes a notched-washer configuration as if transitioning between the ends of the helix. We propose that ATP binding propagates growth at one end of the helix while hydrolysis promotes disassembly at the other end, so that Vps4 'walks' along ESCRT-III until it encounters the ordered N-terminal domain to destabilize the ESCRT-III lattice. This model may be generally applicable to other protein-translocating AAA ATPases.


Assuntos
Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA