Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Asian J Pharm Sci ; 19(4): 100946, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39246508

RESUMO

Acne vulgaris ranks as the second most prevalent dermatological condition worldwide, and there are still insufficient safe and reliable drugs to treat it. Cryptotanshinone (CTS), a bioactive compound derived from traditional Chinese medicine Salvia miltiorrhiza, has shown promise for treating acne vulgaris due to its broad-spectrum antimicrobial and significant anti-inflammatory properties. Nevertheless, its local application is hindered by its low solubility and poor skin permeability. To overcome these challenges, a carrier-free pure drug self-assembled nanosystem is employed, which can specifically modify drug molecules based on the disease type and microenvironment, offering a potential for more effective treatment. We designed and synthesized three distinct structures of cationic CTS-peptide conjugates, creating self-assembled nanoparticles. This study has explored their self-assembly behavior, skin permeation, cellular uptake, and both in vitro and in vivo anti-acne effects. Molecular dynamics simulations revealed these nanoparticles form through intermolecular hydrogen bonding and π-π stacking interactions. Notably, self-assembled nanoparticles demonstrated enhanced bioavailability with higher skin permeation and cellular uptake rates. Furthermore, the nanoparticles exhibited superior anti-acne effects compared to the parent drug, attributed to heightened antimicrobial activity and significant downregulation of the MAPK/NF-κB pathway, leading to reduced expression of pro-inflammatory factors including TNF-α, IL-1ß and IL-8. In summary, the carrier-free self-assembled nanoparticles based on CTS-peptide conjugate effectively address the issue of poor skin bioavailability, offering a promising new approach for acne treatment.

2.
Int J Biol Macromol ; 279(Pt 3): 135208, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39218176

RESUMO

Changes and causal relationships in the hierarchical structure, thermal, pasting and rheological properties, as well as the digestive behavior of starch under different high hydrostatic pressure (HHP) treatment time were investigated. At 5 min, the thickness of amorphous lamellae increased (2.76 nm) and the content of B2 and B3 chains in the amorphous lamellae decreased significantly (10.78 % and 9.08 %). As the treatment time increased, the crystalline lamellae swelled and tightly arranged double helices located in the crystalline lamellae were disturbed, resulting in a decrease in the content of double helices (12.16 %) and relative crystallinity (16.96 %). Helix dissociation, crystal disruption, lamellar collapse and granule deformation were observed at 20 min. These structural changes were closely linked to variations in the physicochemical behaviors. The thermal parameters decreased gradually, accompanied by a decrease in double helix stability. The swollen crystalline lamellae provided more space for molecular stretching, thus enhancing the pasting characteristics. Regarding the digestive behavior, the swollen amorphous lamellae facilitated the invention of enzyme molecules to hydrolyze the starch at 5 min. The digestion rate coefficient and rapidly digestible starch content increased significantly until 15 min, which demonstrated that starch was more easily digested while retaining its intact granular form.

3.
Food Funct ; 15(18): 9409-9419, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39189421

RESUMO

Plant-based proteins have received considerable global attention due to their nutritional value and potential health effects. As a high-quality plant protein, the hypoglycemic effect of quinoa protein and its potential mechanism have not been fully elucidated. In the present study, we compared the hypoglycemic effects of raw quinoa protein (RP-quinoa) and heat-treated quinoa protein (HP-quinoa) and further explored their potential mechanisms using multi-omics analysis based on gut microbiota and fecal metabolic profiles in HFD-fed mice. Our results showed that both RP-quinoa and HP-quinoa effectively improved glucose metabolism and protected against alterations in gut microbiota induced by a chronic HFD. In addition, quinoa protein increased the relative abundance of beneficial bacteria such as the g__Lachnospiraceae_NK4A136_group, g__Eubacterium_xylanophilum_group, and g__Negativibacillus, followed by an increase in short-chain fatty acids and potentially beneficial metabolites such as L-phenylalanine and L-cysteine. Together, these findings provided the basis for linking gut microbiota and their metabolites to the hypoglycemic effect of quinoa protein.


Assuntos
Chenopodium quinoa , Dieta Hiperlipídica , Fezes , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Proteínas de Plantas , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Chenopodium quinoa/química , Camundongos , Masculino , Fezes/microbiologia , Proteínas de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Temperatura Alta , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/genética , Hipoglicemiantes/farmacologia , Glucose/metabolismo , Glicemia/metabolismo , Metaboloma
4.
Nutrients ; 16(16)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39203797

RESUMO

The gut microbiota are mainly composed of Bacteroidetes and Firmicutes and are crucial for metabolism and immunity. Muribaculaceae are a family of bacteria within the order Bacteroidetes. Muribaculaceae produce short-chain fatty acids via endogenous (mucin glycans) and exogenous polysaccharides (dietary fibres). The family exhibits a cross-feeding relationship with probiotics, such as Bifidobacterium and Lactobacillus. The alleviating effects of a plant-based diet on inflammatory bowel disease, obesity, and type 2 diabetes are associated with an increased abundance of Muribaculaceae, a potential probiotic bacterial family. This study reviews the current findings related to Muribaculaceae and systematically introduces their diversity, metabolism, and function. Additionally, the mechanisms of Muribaculaceae in the alleviation of chronic diseases and the limitations in this field of research are introduced.


Assuntos
Bacteroidetes , Microbioma Gastrointestinal , Probióticos , Microbioma Gastrointestinal/fisiologia , Humanos , Ácidos Graxos Voláteis/metabolismo , Animais , Diabetes Mellitus Tipo 2/microbiologia , Fibras na Dieta/farmacologia , Obesidade/microbiologia
5.
Food Chem ; 460(Pt 3): 140772, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39121780

RESUMO

Barley is an important source of sustainable diets for humans, while its brans is commonly disposed as wastes. The recycling of barley brans has become a key for facilitating the valorization of barley as a whole to achieve its sustainable development. This review summarized the value of barley brans as an excellent source of multiple functional components (phenolic compounds, ß-glucan, and arabinoxylan), which conferred extensive health benefits to barley brans mainly including antioxidant, anti-obesity and lipid-lowering, anti-diabetic, and hepatoprotective properties. The utilization of barley brans reflected a great potential for sustainable development. Exploiting of food products and edible films containing barley brans or their bioactive compounds and non-food applications (preparation of bioactive substances, laccase enzymes, and biosorbents) have been attempted for supporting the zero-waste concept and circular economy. Considering their diverse applications, effective extraction techniques of bioactive compounds from barley brans and their safety are the priority of future research.


Assuntos
Hordeum , Hordeum/química , Humanos , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Fibras na Dieta/análise , Extratos Vegetais/química , Extratos Vegetais/farmacologia , beta-Glucanas/química , beta-Glucanas/farmacologia , Xilanos
6.
Food Funct ; 15(15): 7782-7793, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38967438

RESUMO

The stability of bioactive peptides under various food processing conditions is the basis for their use in industrial manufacturing. This study aimed to identify natural ACE inhibitors with excellent stability and investigate their physicochemical properties and putative molecular mechanisms. Five novel ACE inhibitory peptides (QDPLFPL, FPGVSPF, SPAQLLPF, LVPYRP, and WYWPQ) were isolated and identified using RP-HPLC and Nano LC-MS/MS with foxtail millet protein hydrolysates as the raw material. These peptides are non-toxic and exhibit strong ACE inhibitory activity in vitro (IC50 values between 0.13 mg mL-1 and 0.56 mg mL-1). In addition to QDPLFPL, FPGVSPF, SPAQLLPF, LVPYRP, and WYWPQ have excellent human intestinal absorption. Compared to FPGVSPF and SPAQLLPF, the stable helical structure of LVPYRP and WYWPQ allows them to maintain high stability under conditions that mimic gastrointestinal digestion and various food processing (temperatures, pH, sucrose, NaCl, citric acid, sodium benzoate, Cu2+, Zn2+, K+, Mg2+, Ca2+). The results of molecular docking and molecular dynamics simulation suggest that LVPYRP has greater stability and binding capacity to ACE than WYWPQ. LVPYRP might attach to the active pockets (S1, S2, and S1') of ACE via hydrogen bonds and hydrophobic interactions, then compete with Zn2+ in ACE to demonstrate its ACE inhibitory activity. The binding of LVPYRP to ACE enhances the rearrangement of ACE's active structural domains, with electrostatic and polar solvation energy contributing the most energy to the binding. Our findings suggested that LVPYRP derived from foxtail millet protein hydrolysates has the potential to be incorporated into functional foods to provide antihypertensive benefits.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Simulação de Acoplamento Molecular , Peptídeos , Proteínas de Plantas , Hidrolisados de Proteína , Setaria (Planta) , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Setaria (Planta)/química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Humanos , Peptídeos/química , Peptídeos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Espectrometria de Massas em Tandem , Simulação por Computador
7.
ACS Omega ; 9(25): 27002-27016, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38947843

RESUMO

Liriodendron chinense has been widely utilized in traditional Chinese medicine to treat dispelling wind and dampness and used for alleviating cough and diminishing inflammation. However, the antioxidant, antimicrobial, and anti-inflammatory effects of L. chinense leaves and the key active constituents remained elusive. So, we conducted some experiments to support the application of L. chinense in traditional Chinese medicine by investigating the antioxidant, antibacterial, and anti-inflammatory abilities, and to identify the potential key constituents responsible for the activities. The ethanol extract of L. chinense leaves (LCLE) was isolated and extracted, and assays measuring ferric reducing antioxidant power, total reducing power, DPPH•, ABTS•+, and •OH were used to assess its in vitro antioxidant capacities. Antimicrobial activities of LCLE were investigated by minimal inhibitory levels, minimum antibacterial concentrations, disc diffusion test, and scanning electron microscope examination. Further, in vivo experiments including macro indicators examination, histopathological examination, and biochemical parameters measurement were conducted to investigate the effects of LCLE on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. LCLE was further isolated and purified through column chromatography, and LPS-induced RAW264.7 cells were constructed to assess the diminished inflammation potential of the identified chemical composites. ABTS•+ and •OH radicals were extensively neutralized by the LCLE treatment. LCLE administration also presented broad-spectrum antimicrobial properties, especially against Staphylococcus epidermidis by disrupting cell walls. LPS-induced ALI in mice was significantly ameliorated by LCLE intervention, as evidenced by the histological changes in the lung and liver tissues as well as the reductions of nitric oxide (NO), TNF-α, and IL-6 production. Furthermore, three novel compounds including fragransin B2, liriodendritol, and rhamnocitrin were isolated, purified, and identified from LCLE. These three compounds exhibited differential regulation on NO accumulation and IL-10, IL-1ß, IL-6, TNF-α, COX-2, and iNOS mRNA expression in RAW264.7 cells induced by LPS. Fragransin B2 was more effective in inhibiting TNF-α mRNA expression, while rhamnocitrin was more powerful in inhibiting IL-6 mRNA expression. LCLE had significant antioxidant, antimicrobial, and anti-inflammatory effects. Fragransin B2, liriodendritol, and rhamnocitrin were probably key active constituents of LCLE, which might act synergistically to treat inflammatory-related disorders. This study provided a valuable view of the healing potential of L. chinense leaves in curing inflammatory diseases.

8.
Research (Wash D C) ; 7: 0391, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887277

RESUMO

Dipeptidyl peptidase-IV (DPP-4) enzyme inhibitors are a promising category of diabetes medications. Bioactive peptides, particularly those derived from bovine milk proteins, play crucial roles in inhibiting the DPP-4 enzyme. This study describes a comprehensive strategy for DPP-4 inhibitory peptide discovery and validation that combines machine learning and virtual proteolysis techniques. Five machine learning models, including GBDT, XGBoost, LightGBM, CatBoost, and RF, were trained. Notably, LightGBM demonstrated superior performance with an AUC value of 0.92 ± 0.01. Subsequently, LightGBM was employed to forecast the DPP-4 inhibitory potential of peptides generated through virtual proteolysis of milk proteins. Through a series of in silico screening process and in vitro experiments, GPVRGPF and HPHPHL were found to exhibit good DPP-4 inhibitory activity. Molecular docking and molecular dynamics simulations further confirmed the inhibitory mechanisms of these peptides. Through retracing the virtual proteolysis steps, it was found that GPVRGPF can be obtained from ß-casein through enzymatic hydrolysis by chymotrypsin, while HPHPHL can be obtained from κ-casein through enzymatic hydrolysis by stem bromelain or papain. In summary, the integration of machine learning and virtual proteolysis techniques can aid in the preliminary determination of key hydrolysis parameters and facilitate the efficient screening of bioactive peptides.

9.
Nutrients ; 16(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38613011

RESUMO

Chinese yam is a "medicine food homology" food with medical properties, but little is known about its health benefits on hyperlipidemia. Furthermore, the effect of peeling processing on the efficacy of Chinese yam is still unclear. In this study, the improvement effects of whole Chinese yam (WY) and peeled Chinese yam (PY) on high-fat-diet (HFD)-induced hyperlipidemic mice were explored by evaluating the changes in physiological, biochemical, and histological parameters, and their modulatory effects on gut microbiota were further illustrated. The results show that both WY and PY could significantly attenuate the HFD-induced obesity phenotype, accompanied by the mitigative effect on epididymis adipose damage and hepatic tissue injury. Except for the ameliorative effect on TG, PY retained the beneficial effects of WY on hyperlipemia. Furthermore, 16S rRNA sequencing revealed that WY and PY reshaped the gut microbiota composition, especially the bloom of several beneficial bacterial strains (Akkermansia, Bifidobacterium, and Faecalibaculum) and the reduction in some HFD-dependent taxa (Mucispirillum, Coriobacteriaceae_UCG-002, and Candidatus_Saccharimonas). PICRUSt analysis showed that WY and PY could significantly regulate lipid transport and metabolism-related pathways. These findings suggest that Chinese yam can alleviate hyperlipidemia via the modulation of the gut microbiome, and peeling treatment had less of an effect on the lipid-lowering efficacy of yam.


Assuntos
Dioscorea , Microbioma Gastrointestinal , Hiperlipidemias , Masculino , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , RNA Ribossômico 16S/genética , Obesidade , Lipídeos
10.
EMBO Mol Med ; 16(2): 294-318, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297099

RESUMO

Diabetic retinopathy (DR) is a leading cause of irreversible vision loss in working-age populations. Fat mass and obesity-associated protein (FTO) is an N6-methyladenosine (m6A) demethylase that demethylates RNAs involved in energy homeostasis, though its influence on DR is not well studied. Herein, we detected elevated FTO expression in vitreous fibrovascular membranes of patients with proliferative DR. FTO promoted cell cycle progression and tip cell formation of endothelial cells (ECs) to facilitate angiogenesis in vitro, in mice, and in zebrafish. FTO also regulated EC-pericyte crosstalk to trigger diabetic microvascular leakage, and mediated EC-microglia interactions to induce retinal inflammation and neurodegeneration in vivo and in vitro. Mechanistically, FTO affected EC features via modulating CDK2 mRNA stability in an m6A-YTHDF2-dependent manner. FTO up-regulation under diabetic conditions was driven by lactate-mediated histone lactylation. FB23-2, an inhibitor to FTO's m6A demethylase activity, suppressed angiogenic phenotypes in vitro. To allow for systemic administration, we developed a nanoplatform encapsulating FB23-2 and confirmed its targeting and therapeutic efficiency in mice. Collectively, our study demonstrates that FTO is important for EC function and retinal homeostasis in DR, and warrants further investigation as a therapeutic target for DR patients.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Quinase 2 Dependente de Ciclina , Diabetes Mellitus , Retinopatia Diabética , Animais , Camundongos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Células Endoteliais/metabolismo , Retina/metabolismo , RNA , Peixe-Zebra/genética
11.
Int J Biol Macromol ; 254(Pt 1): 127725, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38287585

RESUMO

Resistant starch (RS) has been extensively studied because of its beneficial effects on gut microbiota. In this study, four RSs obtained through various preparation processes were utilized for in vitro fermentation, and their structural characteristics before and after fermentation were determined using chromatography, Fourier infrared spectroscopy, and scanning electron microscopy (SEM). It was observed that these RSs can be classified into two categories based on their fermentation and structural features. The autoclaving RS (ARS) and extruding RS (ERS) were classified as Class I Microbiome Community (MC-I), characterized by a higher proportion of butyrate and its producers, including unclassified_g_Megasphaera and Megasphaera elsdenii. While microwaving RS (MRS) and ultrasound RS (URS) belonged to Class II Microbiome Community (MC-II), marked by a higher proportion of acetate and its producer, Bifidobacterium pseudocatenulatum DSM 20438. MC-I had a lower molecular weight, shorter chain length, more chains with degree of polymerization (DP) 36-100, and a more ordered structure than MC-II. Furthermore, SEM observations revealed distinct degradation patterns between MC-I and MC-II, which may be attributed to their surface structural characteristics. These findings imply that the preparation methods employed for RS can determine its multilevel structural characteristics, and consequently influence its physiological properties.


Assuntos
Microbioma Gastrointestinal , Microbiota , Fermentação , Amido Resistente/metabolismo , Amido/química , Fezes/microbiologia , Ácidos Graxos Voláteis/metabolismo
12.
Environ Res ; 244: 117841, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065390

RESUMO

Olefin industry as a vital part in economic development is facing a problem of high CO2 emission. In this work, for the global and China's olefin industry under different development scenario, the carbon emission is predicted after the revealing of carbon footprint in different olefin routes. The results show that the carbon footprint of the natural gas liquids (NGLs)-derived route is highly lower than that of the oil- and coal-derived routes. The carbon emission from the global olefin industry in 2015 is 553 million ton CO2 (MtCO2). In 2030, it will be ranged between 739 and 924 MtCO2 under different scenarios. Under sustainable development scenario, 15% reduction space is existed, whereas 6% growth is observed under the hybrid-development scenario compared to the business-as-usual situation. In the case of China, its carbon emission is 120 MtCO2 in 2015. Its potential carbon emission in 2030 will increase to 264-925 MtCO2, depending on the rest new capacity from low-carbon or high-carbon routes. The large gap implies the significant influence of the development route choice. However, if most new capacity is from the existed planned olefin projects, the carbon emission will be ranged between 390 and 594 MtCO2. Finally, the low-carbon roadmaps as well as polices are proposed for sustainable development of olefin industry.


Assuntos
Dióxido de Carbono , Carbono , Dióxido de Carbono/análise , Carbono/análise , Alcenos , Carvão Mineral , Gás Natural , China , Desenvolvimento Econômico
13.
Food Chem ; 439: 138129, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38100876

RESUMO

Heat-treated adzuki bean protein hydrolysates exhibit lipid-reducing properties; however, few studies have reported pancreatic lipase (PL) and cholesterol esterase (CE) inhibitory effects and elucidated the underlying mechanisms. In this study, we accomplished the identification of antiobesity peptides through peptide sequencing, virtual screening, and in vitro experiments. Furthermore, the mechanisms were investigated via molecular docking. The findings reveal that the action of pepsin and pancreatin resulted in the transformation of intact adzuki bean protein into smaller peptide fragments. The < 3 kDa fraction exhibited a high proportion of hydrophobic amino acids and displayed superior inhibitory properties for both PL and CE. Five novel antiobesity peptides (LLGGLDSSLLPH, FDTGSSFYNKPAG, IWVGGSGMDM, YLQGFGKNIL, and IFNNDPNNHP) were identified as PL and CE inhibitors. Particularly, IFNNDPNNHP exhibited the most robust biological activity. These peptides exerted their inhibitory action on PL and CE by occupying catalytic or substrate-binding sites through hydrogen bonds, hydrophobic interactions, salt bridges, and π-π stacking.


Assuntos
Vigna , Vigna/genética , Vigna/metabolismo , Esterol Esterase , Hidrolisados de Proteína/química , Simulação de Acoplamento Molecular , Temperatura Alta , Lipase/química , Peptídeos/química
14.
Artigo em Inglês | MEDLINE | ID: mdl-37980702

RESUMO

Licorice flavonoids (LFs) are derived from perennial herb licorice and have been attaining a considerable interest in cosmetic and skin ailment treatments. However, some LFs compounds exhibited poor permeation and retention capability, which restricted their application. In this paper, we systematically investigated and compared the enhancement efficacy and mechanisms of different penetration enhancers (surfactants) with distinct lipophilicity or "heat and cool" characteristics on ten LFs compounds. Herein, the aim was to unveil how seven different enhancers modified the stratum corneum (SC) surface and influence the drug-enhancers-skin interaction, and to relate these effects to permeation enhancing effects of ten LFs compounds. The enhancing efficacy was evaluated by enhancement ratio (ER)permeation, ERretention, and ERcom, which was conducted on the porcine skin. It was summarized that heat capsaicin (CaP) and lipophilic Plurol® Oleique CC 497 (POCC) caused the most significance of SC lipid fluidity, SC water loss, and surface structure alterations, thereby resulting in a higher permeation enhancing effects than other enhancers. CaP could completely occupied drug-skin interaction sites in the SC, while POCC only occupied most drug-skin interactions. Moreover, the enhancing efficacy of both POCC and CaP was dependent on the log P values of LFs. For impervious LFs with low drug solubility, enhancing their drug solubility could help them permeate into the SC. For high-permeation LFs, their permeation was inhibited ascribed to the strong drug-enhancer-skin strength in the SC. More importantly, drug-surfactant-skin energy possessed a good negative correlation with the LFs permeation amount for most LFs molecules. Additionally, the activation of transient receptor potential vanilloid 1 (TRPV1) could enhance LFs permeation by CaP. The study provided novel insights for drug permeation enhancement from the viewpoint of molecular pharmaceutics, as well as the scientific utilization of different enhancers in topical or transdermal formulations.

15.
Nutrients ; 15(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836470

RESUMO

The efficacy and mechanism of highland barley in the treatment of atherosclerosis have received little attention. Herein, we aimed to explore whether highland barley supplementation can prevent atherosclerosis progression and improve gut microbiota disorder in apolipoprotein E knockout (ApoE-/-) mice. Male ApoE-/- mice were fed a high-fat diet with whole-grain highland barley (WHB) or refined highland barley for 18 weeks. WHB substantially inhibited the formation of atherosclerotic plaques, reduced serum tumor necrosis factor-α, and downregulated the expression of NLRP3 in the aorta. Furthermore, the 16S rRNA analysis revealed that highland barley supplementation helped to restore the dysregulation of the gut microbiota, as evidenced by an increase in the relative abundance of specific beneficial bacteria known for their anti-inflammatory properties, such as Lachnospiraceae, Lactobacillus, Muribaculaceae, and Bifidobacterium. Highland barley supplementation might alleviate atherosclerotic plaque formation by modulating the NLRP3 inflammasome pathway and the synthesis of anti-inflammatory metabolites by the gut microbiota.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Hordeum , Placa Aterosclerótica , Masculino , Animais , Camundongos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , RNA Ribossômico 16S , Aterosclerose/metabolismo , Anti-Inflamatórios/uso terapêutico , Apolipoproteínas E/genética , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos
16.
BMC Pediatr ; 23(1): 429, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641008

RESUMO

BACKGROUND: Pediatric pulmonary hypertension (PH) is a serious and rare disease that is often derived from genetic mutations. Kabuki syndrome (KS) is a chromosomal abnormality disease that has its origin in the mutation of lysine methyltransferase 2D(KMT2D). Recent evidence has shown that KMT2D mutations are associated with pediatric pulmonary disorders. However, the relationship between the clinical courses of PH and the KMT2D mutation is reported in extremely few cases. Therefore, in this paper, a case was presented and previous literature was reviewed for better understanding of the correlation between pediatric PH and KMT2D mutations. CASE PRESENTATION: A 3-year-old girl was transferred to our center for severe cough, shortness of breath, fatigue and fever. Physical examination revealed facial deformities and growth retardation. Echocardiography showed a small atrial septal defect (ASD), and right heart catheterization indicated a significant increase in pulmonary vascular pressure and resistance. The genetic test suggested that she had a KMT2D gene mutation. The patient was finally diagnosed with KS. She was given targeted drugs to reduce pulmonary vascular pressure, but the effect was unsatisfactory. CONCLUSIONS: KS can be complicated with multiple organ malformations and dysfunction. With the progress of next generation sequencing, an increasing number of new phenotypes related to KMT2D mutations have been reported. A bold hypothesis is proposed in this article, that is, PH may be a new phenotype associated with KMT2D mutations. It is suggested that KS and PH should be differentiated from each other to avoid delayed diagnosis and treatment in clinical practice. There is no specific drug for KS treatment. The prognosis of children with inherited PH is usually poor, and lung transplantation may increase their survival rates.


Assuntos
Anormalidades Múltiplas , Hipertensão Pulmonar , Humanos , Feminino , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/genética , Fenótipo , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Testes Genéticos
17.
Food Funct ; 14(14): 6749-6750, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37357991

RESUMO

Correction for 'Heat-treated foxtail millet protein delayed the development of pre-diabetes to diabetes in mice by altering gut microbiota and metabolomic profiles' by Han Wang et al., Food Funct., 2023, 14, 4866-4880, https://doi.org/10.1039/D3FO00294B.

18.
J Agric Food Chem ; 71(26): 10075-10086, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37347971

RESUMO

Millet and its components have received much extensive attention for their health benefits in mitigating metabolic diseases. Foxtail millet is rich in phytochemicals, including oil. However, the hypoglycemic capacity of foxtail millet oil has yet to be fully investigated. The present study explored the effects of consuming this oil as the lipid extract of foxtail millet (LEFM) on intestinal microbiota composition and metabolic function in diabetic mice. After eight weeks of LEFM supplementation, the blood glucose, insulin resistance index, and lipid accumulation of diabetic mice were significantly decreased. In addition, LEFM feeding modulated gut microbiota composition, reduced the abundance of harmful bacteria (Escherichia-Shigella, Peptococcus, and norank_f_Oscillospiraceae), induced a bloom of probiotics, especially short-chain fatty acid (SCFA)-producing bacteria (Adlercreutzia, Faecalibaculum, and Bifidobacterium), and increased SCFAs concentration. LEFM treatment altered serum metabolite levels, for instance, greatly increasing the levels of l-carnitine and l-glutamine and reducing S-acetyldihydrolipoamide-E and sphingosine. Overall, improvements in gut microbiota and metabolic function were associated with the hypoglycemic potential of LEFM.


Assuntos
Diabetes Mellitus Experimental , Microbioma Gastrointestinal , Setaria (Planta) , Animais , Camundongos , Setaria (Planta)/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Metabolômica , Hipoglicemiantes/metabolismo , Lipídeos
19.
Food Funct ; 14(10): 4866-4880, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37133422

RESUMO

Millet protein has gained much attention for its beneficial effects in mitigating metabolic diseases. However, most individuals pass through a prediabetic phase before developing full-blown diabetes, and whether millet protein has hypoglycemic effects on prediabetic mice remains unclear. In the present study, heat-treated foxtail millet protein (HMP) supplementation significantly decreased fasting blood glucose and serum insulin levels, alleviated insulin resistance, and improved impaired glucose tolerance in prediabetic mice. In addition, HMP altered the intestinal flora composition, as evidenced by the reduction in the abundance of Dubosiella and Marvinbryantia and the increase in the content of Lactobacillus, Bifidobacterium, and norank_f_Erysipelotrichaceae. Moreover, HMP supplementation dramatically regulated the levels of serum metabolites (i.e., LysoPCs, 11,14,17-eicosatrienoic acid, and sphingosine) and related metabolic pathways, such as sphingolipid metabolism and pantothenate and CoA biosynthesis. In conclusion, the improvement of gut microbiota and serum metabolic profiles was related to the hypoglycemic potential of HMP in prediabetes.


Assuntos
Microbioma Gastrointestinal , Resistência à Insulina , Estado Pré-Diabético , Setaria (Planta) , Animais , Camundongos , Temperatura Alta , Hipoglicemiantes
20.
Int J Biol Macromol ; 242(Pt 3): 125107, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37257541

RESUMO

Ten foxtail millet cultivars with different congee-making quality were investigated for relationships between starch structures, functional properties and congee-making qualities. Swelling power, pasting peak viscosity (PV) and setback (SB), gel hardness and resilience, and gelatinization onset (To), peak (Tp) and range (R) temperature were correlated with congee-making performance significantly. Good eating-quality cultivars with these parameters were in the range of 15.41-18.58 %, 3095-3279 cp, 1540-1745 cp, 430-491 g, 0.47-0.57, 64.43-65.28 °C, 69.97-70.32 °C and 23.38-24.52 °C, respectively. Correlation analysis showed that amylose, amylopectin B2 chains and A21 were essential parameters controlling the functional properties. Amylose molecules with linear molecular morphology would cause crystal defects and a wide range of molecular weight distribution. Additionally, they were more prone to re-association, which influenced the PV, SB, To, Tp and gel hardness. B2 chains impacted the gelatinization temperature range (R), gel resilience and swelling behavior by affecting the alignment of double helices and the size of starch particles and pores. Starch with more binding sites of bound water (A21) tended to leach from the swelling granules easily and contributed to higher values of PV. The content of amylose, B2 chains and A21 of good eating-quality cultivars were 16.19-18.46 %, 11.60-11.69 % and 96.50-97.02 %, respectively.


Assuntos
Setaria (Planta) , Amido , Amido/química , Amilose/química , Setaria (Planta)/química , Amilopectina/química , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA