Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Cell Cycle ; 23(1): 43-55, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38263737

RESUMO

Sunitinib resistance creates a major clinical challenge for the treatment of advanced clear cell renal cell carcinoma (ccRCC) and functional and metabolic changes linked to sunitinib resistance are not fully understood. We sought to characterize the molecular and metabolic changes induced by the development of sunitinib resistance in ccRCC by developing and characterizing two human ccRCC cell lines resistant to sunitinib. Consistent with the literature, sunitinib-resistant ccRCC cell lines presented an aberrant overexpression of Axl and PD-L1, as well as a metabolic rewiring characterized by enhanced OXPHOS and glutamine metabolism. Therapeutic challenges of sunitinib-resistant ccRCC cell lines in vitro using small molecule inhibitors targeting Axl, AMPK and p38, as well as using PD-L1 blocking therapeutic antibodies, showed limited CTL-mediated cytotoxicity in a co-culture model. However, the AMPK activator metformin appears to sensitize the effect of PD-L1 blocking therapeutic antibodies and to enhance CTLs' cytotoxic effects on ccRCC cells. These effects were not broadly observed with the Axl and the p38 inhibitors. Taken together, these data suggest that targeting certain pathways aberrantly activated by sunitinib resistance such as the AMPK/PDL1 axis might sensitize ccRCC to immunotherapies as a second-line therapeutic approach.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Sunitinibe/farmacologia , Sunitinibe/uso terapêutico , Carcinoma de Células Renais/patologia , Antígeno B7-H1 , Neoplasias Renais/patologia , Proteínas Quinases Ativadas por AMP , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos
2.
Nat Commun ; 14(1): 6725, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872153

RESUMO

The resolution of SARS-CoV-2 replication hinges on cell-mediated immunity, wherein CD8+ T cells play a vital role. Nonetheless, the characterization of the specificity and TCR composition of CD8+ T cells targeting non-spike protein of SARS-CoV-2 before and after infection remains incomplete. Here, we analyzed CD8+ T cells recognizing six epitopes from the SARS-CoV-2 nucleocapsid (N) protein and found that SARS-CoV-2 infection slightly increased the frequencies of N-recognizing CD8+ T cells but significantly enhanced activation-induced proliferation compared to that of the uninfected donors. The frequencies of N-specific CD8+ T cells and their proliferative response to stimulation did not decrease over one year. We identified the N222-230 peptide (LLLDRLNQL, referred to as LLL thereafter) as a dominant epitope that elicited the greatest proliferative response from both convalescent and uninfected donors. Single-cell sequencing of T cell receptors (TCR) from LLL-specific CD8+ T cells revealed highly restricted Vα gene usage (TRAV12-2) with limited CDR3α motifs, supported by structural characterization of the TCR-LLL-HLA-A2 complex. Lastly, transcriptome analysis of LLL-specific CD8+ T cells from donors who had expansion (expanders) or no expansion (non-expanders) after in vitro stimulation identified increased chromatin modification and innate immune functions of CD8+ T cells in non-expanders. These results suggests that SARS-CoV-2 infection induces LLL-specific CD8+ T cell responses with a restricted TCR repertoire.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Humanos , SARS-CoV-2/metabolismo , Epitopos de Linfócito T , Receptores de Antígenos de Linfócitos T/metabolismo , Nucleocapsídeo/metabolismo , Glicoproteína da Espícula de Coronavírus
3.
Life (Basel) ; 13(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240841

RESUMO

Opioids are commonly prescribed for extended periods of time to patients with advanced clear cell renal cell carcinoma to assist with pain management. Because extended opioid exposure has been shown to affect the vasculature and to be immunosuppressive, we investigated how it may affect the metabolism and physiology of clear cell renal cell carcinoma. RNA sequencing of a limited number of archived patients' specimens with extended opioid exposure or non-opioid exposure was performed. Immune infiltration and changes in the microenvironment were evaluated using CIBERSORT. A significant decrease in M1 macrophages and T cells CD4 memory resting immune subsets was observed in opioid-exposed tumors, whereas the changes observed in other immune cells were not statistically significant. Further RNA sequencing data analysis showed that differential expression of KEGG signaling pathways was significant between non-opioid-exposed specimens and opioid-exposed specimens, with a shift from a gene signature consistent with aerobic glycolysis to a gene signature consistent with the TCA cycle, nicotinate metabolism, and the cAMP signaling pathway. Together, these data suggest that extended opioid exposure changes the cellular metabolism and immune homeostasis of ccRCC, which might impact the response to therapy of these patients, especially if the therapy is targeting the microenvironment or metabolism of ccRCC tumors.

4.
J Proteome Res ; 21(10): 2341-2355, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36129246

RESUMO

Glycoproteomic analysis of three Chinese hamster ovary (CHO) suspension host cell lines (CHO-K1, CHO-S, and CHO-Pro5) commonly utilized in biopharmaceutical settings for recombinant protein production is reported. Intracellular and secreted glycoproteins were examined. We utilized an immobilization and chemoenzymatic strategy in our analysis. Glycoproteins or glycopeptides were first immobilized through reductive amination, and the sialyl moieties were amidated for protection. The desired N- or O-glycans and glycopeptides were released from the immobilization resin by enzymatic or chemical digestion. Glycopeptides were studied by Orbitrap Liquid chromatography-mass spectrometry (LC/MS), and the released glycans were analyzed by Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). Differences were detected in the relative abundances of N- and O-glycopeptide types, their resident and released glycans, and their glycoprotein complexity. Ontogeny analysis revealed key differences in features, such as general metabolic and biosynthetic pathways, including glycosylation systems, as well as distributions in cellular compartments. Host cell lines and subfraction differences were observed in both N- and O-glycan and glycoprotein pools. Differences were observed in sialyl and fucosyl glycan distributions. Key differences were also observed among glycoproteins that are problematic contaminants in recombinant antibody production. The differences revealed in this study should inform the choice of cell lines best suited for a particular bioproduction application.


Assuntos
Produtos Biológicos , Glicopeptídeos , Animais , Células CHO , Cricetinae , Cricetulus , Glicopeptídeos/análise , Glicoproteínas/metabolismo , Polissacarídeos/química , Proteínas Recombinantes/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
5.
Front Oncol ; 12: 858379, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656514

RESUMO

The immune checkpoint programmed death-ligand 1 (PD-L1) is expressed on the cell surface of tumor cells and is key for maintaining an immunosuppressive microenvironment through its interaction with the programmed death 1 (PD-1). Clear cell renal cell carcinoma (ccRCC) is a highly immunogenic cancer characterized by an aberrant aerobic glycolytic metabolism and is known to overexpress PD-L1. Multiple immunotherapies have been approved for the treatment of ccRCC, including cytokines and immune checkpoint inhibitors. Recently the intrinsic role of PD-L1 and interferon gamma (IFNγ) signaling have been studied in several types of tumor cells, yet it remains unclear how they affect the metabolism and signaling pathways of ccRCC. Using metabolomics, metabolic assays and RNAseq, we showed that IFNγ enhanced aerobic glycolysis and tryptophan metabolism in ccRCC cells in vitro and induced the transcriptional expression of signaling pathways related to inflammation, cell proliferation and cellular energetics. These metabolic and transcriptional effects were partially reversed following transient PD-L1 silencing. Aerobic glycolysis, as well as signaling pathways related to inflammation, were not induced by IFNγ when PD-L1 was silenced, however, tryptophan metabolism and activation of Jak2 and STAT1 were maintained. Our data demonstrate that PD-L1 expression is required to mediate some of IFNγ's effect in ccRCC cells and highlight the importance of PD-L1 signaling in regulating the metabolism of ccRCC cells in response to inflammatory signals.

6.
J Clin Invest ; 132(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35708913

RESUMO

A diverse T cell receptor (TCR) repertoire is essential for protection against a variety of pathogens, and TCR repertoire size is believed to decline with age. However, the precise size of human TCR repertoires, in both total and subsets of T cells, as well as their changes with age, are not fully characterized. We conducted a longitudinal analysis of the human blood TCRα and TCRß repertoire of CD4+ and CD8+ T cell subsets using a unique molecular identifier-based (UMI-based) RNA-seq method. Thorough analysis of 1.9 × 108 T cells yielded the lower estimate of TCR repertoire richness in an adult at 3.8 × 108. Alterations of the TCR repertoire with age were observed in all 4 subsets of T cells. The greatest reduction was observed in naive CD8+ T cells, while the greatest clonal expansion was in memory CD8+ T cells, and the highest increased retention of TCR sequences was in memory CD8+ T cells. Our results demonstrated that age-related TCR repertoire attrition is subset specific and more profound for CD8+ than CD4+ T cells, suggesting that aging has a more profound effect on cytotoxic as opposed to helper T cell functions. This may explain the increased susceptibility of older adults to novel infections.


Assuntos
Linfócitos T CD8-Positivos , Subpopulações de Linfócitos T , Adulto , Idoso , Linfócitos T CD4-Positivos , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética
7.
Mol Ther Methods Clin Dev ; 24: 255-267, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35211638

RESUMO

Despite the high safety profile demonstrated in clinical trials, the immunogenicity of adeno-associated virus (AAV)-mediated gene therapy remains a major hurdle. Specifically, T-cell-mediated immune responses to AAV vectors are related to loss of efficacy and potential liver toxicities. As post-translational modifications in T cell epitopes have the potential to affect immune reactions, the cellular immune responses to peptides derived from spontaneously deamidated AAV were investigated. Here, we report that highly deamidated sites in AAV9 contain CD4 T cell epitopes with a Th1 cytokine pattern in multiple human donors with diverse human leukocyte antigen (HLA) backgrounds. Furthermore, some peripheral blood mononuclear cell (PBMC) samples demonstrated differential T cell activation to deamidated or non-deamidated epitopes. Also, in vitro and in silico HLA binding assays showed differential binding to the deamidated or non-deamidated peptides in some HLA alleles. This study provides critical attributes to vector-immune-mediated responses, as AAV deamidation can impact the immunogenicity, safety, and efficacy of AAV-mediated gene therapy in some patients.

8.
PLoS One ; 17(1): e0262134, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34990474

RESUMO

Autophagy drives drug resistance and drug-induced cancer cell cytotoxicity. Targeting the autophagy process could greatly improve chemotherapy outcomes. The discovery of specific inhibitors or activators has been hindered by challenges with reliably measuring autophagy levels in a clinical setting. We investigated drug-induced autophagy in breast cancer cell lines with differing ER/PR/Her2 receptor status by exposing them to known but divergent autophagy inducers each with a unique molecular target, tamoxifen, trastuzumab, bortezomib or rapamycin. Differential gene expression analysis from total RNA extracted during the earliest sign of autophagy flux showed both cell- and drug-specific changes. We analyzed the list of differentially expressed genes to find a common, cell- and drug-agnostic autophagy signature. Twelve mRNAs were significantly modulated by all the drugs and 11 were orthogonally verified with Q-RT-PCR (Klhl24, Hbp1, Crebrf, Ypel2, Fbxo32, Gdf15, Cdc25a, Ddit4, Psat1, Cd22, Ypel3). The drug agnostic mRNA signature was similarly induced by a mitochondrially targeted agent, MitoQ. In-silico analysis on the KM-plotter cancer database showed that the levels of these mRNAs are detectable in human samples and associated with breast cancer prognosis outcomes of Relapse-Free Survival in all patients (RSF), Overall Survival in all patients (OS), and Relapse-Free Survival in ER+ Patients (RSF ER+). High levels of Klhl24, Hbp1, Crebrf, Ypel2, CD22 and Ypel3 were correlated with better outcomes, whereas lower levels of Gdf15, Cdc25a, Ddit4 and Psat1 were associated with better prognosis in breast cancer patients. This gene signature uncovers candidate autophagy biomarkers that could be tested during preclinical and clinical studies to monitor the autophagy process.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Células MCF-7 , Compostos Organofosforados/farmacologia , Compostos Organofosforados/uso terapêutico , Receptor ErbB-2/genética , Receptores de Estrogênio/genética , Receptores de Progesterona/genética , Análise de Sequência de RNA , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico
9.
Nat Commun ; 12(1): 6559, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772941

RESUMO

SARS-CoV-2 variants of concern (VOC) B.1.1.7 (alpha) and B.1.351 (beta) show increased transmissibility and enhanced antibody neutralization resistance. Here we demonstrate in K18-hACE2 transgenic mice that B.1.1.7 and B.1.351 are 100-fold more lethal than the original SARS-CoV-2 bearing 614D. B.1.1.7 and B.1.351 cause more severe organ lesions in K18-hACE2 mice than early SARS-CoV-2 strains bearing 614D or 614G, with B.1.1.7 and B.1.351 infection resulting in distinct tissue-specific cytokine signatures, significant D-dimer depositions in vital organs and less pulmonary hypoxia signaling before death. However, K18-hACE2 mice with prior infection of early SARS-CoV-2 strains or intramuscular immunization of viral spike or receptor binding domain are resistant to the lethal reinfection of B.1.1.7 or B.1.351, despite having reduced neutralization titers against these VOC than early strains. Our results thus distinguish pathogenic patterns in K18-hACE2 mice caused by B.1.1.7 and B.1.351 infection from those induced by early SARS-CoV-2 strains, and help inform potential medical interventions for combating COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , COVID-19/genética , COVID-19/patologia , Linhagem Celular , Chlorocebus aethiops , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Produtos de Degradação da Fibrina e do Fibrinogênio/imunologia , Hipóxia/virologia , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/patogenicidade
10.
AAPS J ; 23(2): 44, 2021 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-33719006

RESUMO

Anthracyclines are a class of chemotherapy drugs that are highly effective for the treatment of human cancers, but their clinical use is limited by associated dose-dependent cardiotoxicity. The precise mechanisms by which individual anthracycline induces cardiotoxicity are not fully understood. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are emerging as a physiologically relevant model to assess drugs cardiotoxicity. Here, we describe an assay platform by coupling hiPSC-CMs and impedance measurement, which allows real-time monitoring of cardiomyocyte cellular index, beating amplitude, and beating rate. Using this approach, we have performed comparative studies on a panel of four anthracycline drugs (doxorubicin, epirubicin, idarubicin, and daunorubicin) which share a high degree of structural similarity but are associated with distinct cardiotoxicity profiles and maximum cumulative dose limits. Notably, results from our hiPSC-CMs impedance model (dose-dependent responses and EC50 values) agree well with the recommended clinical dose limits for these drugs. Using time-lapse imaging and RNAseq, we found that the differences in anthracycline cardiotoxicity are closely linked to extent of cardiomyocyte uptake and magnitude of activation/inhibition of several cellular pathways such as death receptor signaling, ROS production, and dysregulation of calcium signaling. The results provide molecular insights into anthracycline cardiac interactions and offer a novel assay system to more robustly assess potential cardiotoxicity during drug development.


Assuntos
Antraciclinas/efeitos adversos , Antibióticos Antineoplásicos/efeitos adversos , Cardiotoxicidade/etiologia , Miócitos Cardíacos/efeitos dos fármacos , Bioensaio/métodos , Sinalização do Cálcio/efeitos dos fármacos , Diferenciação Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Impedância Elétrica , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Microscopia Intravital/métodos , Miócitos Cardíacos/fisiologia , Estresse Oxidativo/efeitos dos fármacos , RNA-Seq , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Imagem com Lapso de Tempo
11.
J Thromb Haemost ; 19(4): 954-966, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33527662

RESUMO

BACKGROUND: Therapeutic products with coagulation factor VIII (FVIII) have a wide range of specific activities, implying presence of protein with altered structure. Previous studies showed that recombinant FVIII products (rFVIII) contain a fraction (FVIIIFT ) unable to bind von Willebrand factor (VWF) and reported to lack activity. Because of loss of function(s), FVIIIFT can be defined as a product-related impurity, whose properties and levels in rFVIII products should be investigated. OBJECTIVE: To isolate and characterize the FVIIIFT fraction in rFVIII products. METHODS: Protein fractions unable (FVIIIFT ) and able (FVIIIEL ) to bind VWF were isolated from rFVIII products using immobilized VWF affinity chromatography (IVAC) and characterized by gel electrophoresis, immunoblotting, FVIII activity test, surface plasmon resonance, mass spectrometry, and for plasma clearance in mice. RESULTS AND CONCLUSIONS: A robust IVAC methodology was developed and applied for analysis of 10 rFVIII products marketed in the United States. FVIIIFT was found at various contents (0.4%-21.5%) in all products. Compared with FVIIIEL , FVIIIFT had similar patterns of polypeptide bands by gel electrophoresis, but lower functional activity. In several representative products, FVIIIFT was found to have reduced sulfation at Tyr1680, important for VWF binding, decreased interaction with a low-density lipoprotein receptor-related protein 1 fragment, and faster plasma clearance in mice. These findings provide basic characterization of FVIIIFT and demonstrate a potential for IVAC to control this impurity in rFVIII products to improve their efficacy in therapy of hemophilia A.


Assuntos
Hemofilia A , Hemostáticos , Animais , Testes de Coagulação Sanguínea , Fator VIII , Hemofilia A/tratamento farmacológico , Camundongos , Fator de von Willebrand
12.
Metab Eng ; 61: 301-314, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32663509

RESUMO

In mammalian cells, N-glycans may include multiple N-acetyllactosamine (poly-LacNAc) units that can play roles in various cellular functions and properties of therapeutic recombinant proteins. Previous studies indicated that ß-1,3-N-acetylglucosaminyltransferase 2 (B3GNT2) and ß-1,4-galactotransferase 1 (B4GALT1) are two of the primary glycosyltransferases involved in generating LacNAc units. In the current study, knocking out sialyltransferase genes slightly enhanced the LacNAc content (≥4 repeats per glycan) on recombinant EPO protein. Next, the role of single and dual-overexpression of B3GNT2 and B4GALT1 was explored in recombinant EPO-expressing Chinese hamster ovary (CHO) cells. While overexpression of B4GALT1 slightly enhanced the levels of large glycans on recombinant EPO, overexpression of B3GNT2 in EPO-expressing CHO cells significantly decreased the recombinant EPO LacNAc content, resulting in N-glycans terminating primarily with GlcNAc structures, a limited number of Gals, and nearly undetectable sialylation, which was also observed in sialyltransferases knock-out-B3GNT2 overexpression cell lines. Considering the nature of the binding domain motifs present on B3GNT2, which evolved from ß1,3-galactosyltransferases, its overexpression may have competed and inhibited endogenous ß1,4-galactosyltransferases for exposed GlcNAc residues on the N-glycans, resulting in premature termination of many N-glycans at GlcNAc. Furthermore, B3GNT2 overexpression enhanced intracellular UDP-GlcNAc and CMP-Neu5Ac content while slightly lowering UDP-Gal content. The presence of a sink for UDP-GlcNAc in the form of B3GNT2 with no disposition may have also elevated the intracellular levels of this nucleotide as well as its downstream product, CMP-Neu5Ac. Furthermore, we were unable to overexpress B4GALT1 at either the transcriptional or translational levels following initial B3GNT2 expression. Expression of B3GNT2 following initial expression of B4GALT1 was also problematic in that transcriptional and translational analysis indicated the accumulation of truncated B3GNT2 missing a section of the B3GNT2 trans-Golgi lumen domain while transmembrane and cytoplasmic domains were present. Given that glycosylation is a very complex intra-network process, the addition of one or more recombinant glycosyltransferases may have an unexpected influence on the expression and activities of glycosyltransferases, which can disrupt the nucleotide sugar levels and lead to unexpected modifications of the resulting N-glycan patterns.


Assuntos
Metabolismo dos Carboidratos , Glicosiltransferases , Engenharia Metabólica , Polissacarídeos , Animais , Células CHO , Cricetulus , Glicosilação , Glicosiltransferases/biossíntese , Glicosiltransferases/genética , Polissacarídeos/biossíntese , Polissacarídeos/genética
13.
Front Immunol ; 11: 224, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265897

RESUMO

To evaluate the expression of immune checkpoint genes, their concordance with expression of IFNγ, and to identify potential novel ICP related genes (ICPRG) in colorectal cancer (CRC), the biological connectivity of six well documented ("classical") ICPs (CTLA4, PD1, PDL1, Tim3, IDO1, and LAG3) with IFNγ and its co-expressed genes was examined by NGS in 79 CRC/healthy colon tissue pairs. Identification of novel IFNγ- induced molecules with potential ICP activity was also sought. In our study, the six classical ICPs were statistically upregulated and correlated with IFNγ, CD8A, CD8B, CD4, and 180 additional immunologically related genes in IFNγ positive (FPKM > 1) tumors. By ICP co-expression analysis, we also identified three IFNγ-induced genes [(IFNγ-inducible lysosomal thiol reductase (IFI30), guanylate binding protein1 (GBP1), and guanylate binding protein 4 (GBP4)] as potential novel ICPRGs. These three genes were upregulated in tumor compared to normal tissues in IFNγ positive tumors, co-expressed with CD8A and had relatively high abundance (average FPKM = 362, 51, and 25, respectively), compared to the abundance of the 5 well-defined ICPs (Tim3, LAG3, PDL1, CTLA4, PD1; average FPKM = 10, 9, 6, 6, and 2, respectively), although IDO1 is expressed at comparably high levels (FPKM = 39). We extended our evaluation by querying the TCGA database which revealed the commonality of IFNγ dependent expression of the three potential ICPRGs in 638 CRCs, 103 skin cutaneous melanomas (SKCM), 1105 breast cancers (BC), 184 esophageal cancers (ESC), 416 stomach cancers (STC), and 501 lung squamous carcinomas (LUSC). In terms of prognosis, based on Pathology Atlas data, correlation of GBP1 and GBP4, but not IFI30, with 5-year survival rate was favorable in CRC, BC, SKCM, and STC. Thus, further studies defining the role of IFI30, GBP1, and GBP4 in CRC are warranted.


Assuntos
Neoplasias da Mama/genética , Colo/fisiologia , Neoplasias Colorretais/genética , Interferon gama/metabolismo , Melanoma/genética , Neoplasias Cutâneas/genética , Neoplasias Gástricas/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/mortalidade , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/mortalidade , Feminino , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteínas de Checkpoint Imunológico/genética , Masculino , Melanoma/imunologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Prognóstico , Neoplasias Cutâneas/imunologia , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/mortalidade , Análise de Sobrevida , Melanoma Maligno Cutâneo
14.
Nat Commun ; 10(1): 5353, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31767844

RESUMO

DNA base editors have enabled genome editing without generating DNA double strand breaks. The applications of this technology have been reported in a variety of animal and plant systems, however, their editing specificity in human stem cells has not been studied by unbiased genome-wide analysis. Here we investigate the fidelity of cytidine deaminase-mediated base editing in human induced pluripotent stem cells (iPSCs) by whole genome sequencing after sustained or transient base editor expression. While base-edited iPSC clones without significant off-target modifications are identified, this study also reveals the potential of APOBEC-based base editors in inducing unintended point mutations outside of likely in silico-predicted CRISPR-Cas9 off-targets. The majority of the off-target mutations are C:G->T:A transitions or C:G->G:C transversions enriched for the APOBEC mutagenesis signature. These results demonstrate that cytosine base editor-mediated editing may result in unintended genetic modifications with distinct patterns from that of the conventional CRISPR-Cas nucleases.


Assuntos
Desaminases APOBEC/metabolismo , Citidina Desaminase/metabolismo , Citosina/metabolismo , Edição de Genes/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Sequenciamento Completo do Genoma/métodos , Desaminases APOBEC/genética , Animais , Sistemas CRISPR-Cas , Citidina Desaminase/genética , Quebras de DNA de Cadeia Dupla , Genoma Humano/genética , Humanos , Mutação , Células Vegetais/metabolismo , Reprodutibilidade dos Testes
15.
Sci Signal ; 12(602)2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594856

RESUMO

Vaccine adjuvants containing analogs of microbial products activate pattern recognition receptors (PRRs) on antigen-presenting cells, including monocytes and macrophages, which can cause prostaglandin E2 (PGE2) release and consequently undesired inflammatory responses and fever in vaccine recipients. Here, we studied the mechanism of PGE2 production by human monocytes activated with muramyl dipeptide (MDP) adjuvant, which activates cytosolic nucleotide-binding oligomerization domain 2 (NOD2). In rabbits, administration of MDP elicited an early increase in PGE2 followed by fever. In human monocytes, MDP alone did not induce PGE2 production. However, high amounts of PGE2 and the proinflammatory cytokines IL-1ß and IL-6 were secreted by monocytes activated with MDP in the presence of conditioned medium obtained from CD3 bead-isolated T cells (Tc CM) but not from those isolated without CD3 beads. Mass spectrometry and immunoblotting revealed that the costimulatory factor in Tc CM was glycoprotein Ib α (GPIbα). Antibody-mediated blockade of GPIbα or of its receptor, Mac-1 integrin, inhibited the secretion of PGE2, IL-1ß, and IL-6 in MDP + Tc CM-activated monocytes, whereas recombinant GPIbα protein increased PGE2 production by MDP-treated monocytes. In vivo, COX2 mRNA abundance was reduced in the liver and spleen of Mac-1 KO mice after administration of MDP compared with that of treated wild-type mice. Our findings suggest that the production of PGE2 and proinflammatory cytokines by MDP-activated monocytes is mediated by cooperation between two signaling pathways: one delivered by MDP through NOD2 and a second through activation of Mac-1 by T cell-derived GPIbα.


Assuntos
Acetilmuramil-Alanil-Isoglutamina/farmacologia , Dinoprostona/metabolismo , Monócitos/efeitos dos fármacos , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Linfócitos T/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Cálcio/metabolismo , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Feminino , Células HEK293 , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Antígeno de Macrófago 1/genética , Antígeno de Macrófago 1/metabolismo , Camundongos Knockout , Monócitos/citologia , Monócitos/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Coelhos , Transdução de Sinais/efeitos dos fármacos , Células THP-1
16.
Nat Microbiol ; 4(12): 2216-2225, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406333

RESUMO

A(H3N2) virus predominated recent influenza seasons, which has resulted in the rigorous investigation of haemagglutinin, but whether neuraminidase (NA) has undergone antigenic change and contributed to the predominance of A(H3N2) virus is unknown. Here, we show that the NA of the circulating A(H3N2) viruses has experienced significant antigenic drift since 2016 compared with the A/Hong Kong/4801/2014 vaccine strain. This antigenic drift was mainly caused by amino acid mutations at NA residues 245, 247 (S245N/S247T; introducing an N-linked glycosylation site at residue 245) and 468. As a result, the binding of the NA of A(H3N2) virus by some human monoclonal antibodies, including those that have broad reactivity to the NA of the 1957 A(H2N2) and 1968 A(H3N2) reference pandemic viruses as well as contemporary A(H3N2) strains, was reduced or abolished. This antigenic drift also reduced NA-antibody-based protection against in vivo virus challenge. X-ray crystallography showed that the glycosylation site at residue 245 is within a conserved epitope that overlaps the NA active site, explaining why it impacts antibody binding. Our findings suggest that NA antigenic drift impacts protection against influenza virus infection, thus highlighting the importance of including NA antigenicity for consideration in the optimization of influenza vaccines.


Assuntos
Vírus da Influenza A Subtipo H3N2/enzimologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/imunologia , Neuraminidase/química , Neuraminidase/imunologia , Animais , Anticorpos Monoclonais , Antígenos Virais/genética , Antígenos Virais/imunologia , Domínio Catalítico , Cristalografia por Raios X , Modelos Animais de Doenças , Genes Virais/genética , Glicosilação , Hong Kong , Humanos , Imunogenicidade da Vacina , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/prevenção & controle , Camundongos , Modelos Moleculares , Mutação , Neuraminidase/genética , Infecções por Orthomyxoviridae/imunologia , Conformação Proteica , Análise de Sequência de Proteína , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/imunologia
17.
BMC Med Genet ; 20(1): 138, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409279

RESUMO

BACKGROUND: Reference genes are often interchangeably called housekeeping genes due to 1) the essential cellular functions their proteins provide and 2) their constitutive expression across a range of normal and pathophysiological conditions. However, given the proliferative drive of malignant cells, many reference genes such as beta-actin (ACTB) and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) which play critical roles in cell membrane organization and glycolysis, may be dysregulated in tumors versus their corresponding normal controls METHODS: Because Next Generation Sequencing (NGS) technology has several advantages over hybridization-based technologies, such as independent detection and quantitation of transcription levels, greater sensitivity, and increased dynamic range, we evaluated colorectal cancers (CRC) and their histologically normal tissue counterparts by NGS to evaluate the expression of 21 "classical" reference genes used as normalization standards for PCR based methods. Seventy-nine paired tissue samples of CRC and their patient matched healthy colonic tissues were subjected to NGS analysis of their mRNAs. RESULTS: We affirmed that 17 out of 21 classical reference genes had upregulated expression in tumors compared to normal colonic epithelial tissue and dramatically so in some cases. Indeed, tumors were distinguished from normal controls in both unsupervised hierarchical clustering analyses (HCA) and principal component analyses (PCA). We then identified 42 novel potential reference genes with minimal coefficients of variation (CV) across 79 CRC tumor pairs. Though largely consistently expressed across tumors and normal control tissues, a subset of high stage tumors (HSTs) as well as some normal tissue samples (HSNs) located adjacent to these HSTs demonstrated dysregulated expression, thus identifying a subset of tumors with a potentially distinct and aggressive biological profile. CONCLUSION: While classical CRC reference genes were found to be differentially expressed between tumors and normal controls, novel reference genes, identified via NGS, were more consistently expressed across malignant and normal colonic tissues. Nonetheless, a subset of HST had profound dysregulation of such genes as did many of the histologically normal tissues adjacent to such HSTs, indicating that the HSTs so distinguished may have unique biological properties and that their histologically normal tissues likely harbor a small population of microscopically undetected but metabolically active tumors.


Assuntos
Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica/genética , Estudos de Associação Genética , Predisposição Genética para Doença/genética , Actinas/genética , Actinas/metabolismo , Biomarcadores Tumorais/genética , Colo/patologia , Neoplasias Colorretais/patologia , Feminino , Perfilação da Expressão Gênica , Genes Essenciais/genética , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , RNA Mensageiro , Análise de Sequência de RNA
18.
PLoS One ; 13(8): e0202263, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30118500

RESUMO

Naturally-occurring chalcones and synthetic chalcone analogues have been demonstrated to have many biological effects, including anti-inflammatory, anti-malarial, anti-fungal, and anti-oxidant/anti-cancerous activities. Compared to other chalcones, trans-chalcone exhibits superior inhibitory activity in cancer cell growth as shown via in vitro assays, and exerts anti-cancerous effects via the activation of the p53 tumor suppressor protein. Thus, characterization of the specific mechanisms, by which trans-chalcone activates p53, can aid development of new chemotherapeutic drugs that can be used individually or synergistically with other drugs. In this report, we found that trans-chalcone modulates many p53 target genes, HSP40 being the most induced gene in the RNA-Seq data using trans-chalcone-treated cells. CRM1 is also inhibited by trans-chalcone, resulting in the accumulation of p53 and other tumor suppressor proteins in the nucleus. Similar effects were seen using trans-chalcone derivatives. Overall, trans-chalcone could provide a strong foundation for the development of chalcone-based anti-cancer drugs.


Assuntos
Antineoplásicos/farmacologia , Chalcona/farmacologia , Proteínas de Choque Térmico HSP40/metabolismo , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fator 3 Ativador da Transcrição/metabolismo , Antineoplásicos/química , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Chalcona/química , Fator 15 de Diferenciação de Crescimento/metabolismo , Humanos , Carioferinas/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Proteína Exportina 1
19.
Anal Chem ; 90(13): 8261-8269, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29936827

RESUMO

Glycosylation plays a critical role in the biosynthetic-secretory pathway in the endoplasmic reticulum (ER) and Golgi apparatus. Over 50% of mammalian cellular proteins are typically glycosylated; this modification is involved in a wide range of biological functions such as barrier formation against intestinal microbes and serves as signaling molecules for selectins and galectins in the innate immune system. N-linked glycosylation analysis has been greatly facilitated owing to a range of specific enzymes available for their release. However, system-wide analysis on O-linked glycosylation remains a challenge due to the lack of equivalent enzymes and the inherent structural heterogeneity of O-glycans. Although O-glycosidase can catalyze the removal of core 1 and core 3 O-linked disaccharides from glycoproteins, analysis of other types of O-glycans remains difficult, particularly when residing on glycopeptides. Here, we describe a novel chemoenzymatic approach driven by a newly available O-protease and solid phase platform. This method enables the assignment of O-glycosylated peptides, N-glycan profile, sialyl O-glycopeptides linkage, and mapping of heterogeneous O-glycosylation. For the first time, we can analyze intact O-glycopeptides generated by O-protease and enriched using a solid-phase platform. We establish the method on standard glycoproteins, confirming known O-glycosites with high accuracy and confidence, and reveal up to 8-fold more glycosites than previously reported with concomitant increased heterogeneity. This technique is further applied for analysis of Zika virus recombinant glycoproteins, revealing their dominant O-glycosites and setting a basis set of O-glycosylation tracts in these important viral antigens. Our approach can serve as a benchmark for the investigation of protein O-glycosylation in diseases and other biomedical contexts. This method should become an indispensable tool for investigations where O-glycosylation is central.


Assuntos
Oxigênio/metabolismo , Proteínas/metabolismo , Glicosilação , Modelos Moleculares , Mucinas/química , Mucinas/metabolismo , Conformação Proteica , Proteínas/química , Proteínas Virais/química , Proteínas Virais/metabolismo , Zika virus/metabolismo
20.
BMC Genomics ; 19(1): 326, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29728062

RESUMO

BACKGROUND: Current library preparation protocols for Illumina HiSeq and MiSeq DNA sequencers require ≥2 nM initial library for subsequent loading of denatured cDNA onto flow cells. Such amounts are not always attainable from samples having a relatively low DNA or RNA input; or those for which a limited number of PCR amplification cycles is preferred (less PCR bias and/or more even coverage). A well-tested sub-nanomolar library preparation protocol for Illumina sequencers has however not been reported. The aim of this study is to provide a much needed working protocol for sub-nanomolar libraries to achieve outcomes as informative as those obtained with the higher library input (≥ 2 nM) recommended by Illumina's protocols. RESULTS: Extensive studies were conducted to validate a robust sub-nanomolar (initial library of 100 pM) protocol using PhiX DNA (as a control), genomic DNA (Bordetella bronchiseptica and microbial mock community B for 16S rRNA gene sequencing), messenger RNA, microRNA, and other small noncoding RNA samples. The utility of our protocol was further explored for PhiX library concentrations as low as 25 pM, which generated only slightly fewer than 50% of the reads achieved under the standard Illumina protocol starting with > 2 nM. CONCLUSIONS: A sub-nanomolar library preparation protocol (100 pM) could generate next generation sequencing (NGS) results as robust as the standard Illumina protocol. Following the sub-nanomolar protocol, libraries with initial concentrations as low as 25 pM could also be sequenced to yield satisfactory and reproducible sequencing results.


Assuntos
Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Bordetella bronchiseptica/genética , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Genoma Bacteriano , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA