Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gigascience ; 132024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-39110622

RESUMO

BACKGROUND: Rhododendron nivale subsp. boreale Philipson et M. N. Philipson is an alpine woody species with ornamental qualities that serve as the predominant species in mountainous scrub habitats found at an altitude of ∼4,200 m. As a high-altitude woody polyploid, this species may serve as a model to understand how plants adapt to alpine environments. Despite its ecological significance, the lack of genomic resources has hindered a comprehensive understanding of its evolutionary and adaptive characteristics in high-altitude mountainous environments. FINDINGS: We sequenced and assembled the genome of R. nivale subsp. boreale, an assembly of the first subgenus Rhododendron and the first high-altitude woody flowering tetraploid, contributing an important genomic resource for alpine woody flora. The assembly included 52 pseudochromosomes (scaffold N50 = 42.93 Mb; BUSCO = 98.8%; QV = 45.51; S-AQI = 98.69), which belonged to 4 haplotypes, harboring 127,810 predicted protein-coding genes. Conjoint k-mer analysis, collinearity assessment, and phylogenetic investigation corroborated autotetraploid identity. Comparative genomic analysis revealed that R. nivale subsp. boreale originated as a neopolyploid of R. nivale and underwent 2 rounds of ancient polyploidy events. Transcriptional expression analysis showed that differences in expression between alleles were common and randomly distributed in the genome. We identified extended gene families and signatures of positive selection that are involved not only in adaptation to the mountaintop ecosystem (response to stress and developmental regulation) but also in autotetraploid reproduction (meiotic stabilization). Additionally, the expression levels of the (group VII ethylene response factor transcription factors) ERF VIIs were significantly higher than the mean global gene expression. We suspect that these changes have enabled the success of this species at high altitudes. CONCLUSIONS: We assembled the first high-altitude autopolyploid genome and achieved chromosome-level assembly within the subgenus Rhododendron. In addition, a high-altitude adaptation strategy of R. nivale subsp. boreale was reasonably speculated. This study provides valuable data for the exploration of alpine mountaintop adaptations and the correlation between extreme environments and species polyploidization.


Assuntos
Altitude , Genoma de Planta , Haplótipos , Filogenia , Rhododendron , Tetraploidia , Rhododendron/genética , Adaptação Fisiológica/genética , Anotação de Sequência Molecular , Poliploidia , Regulação da Expressão Gênica de Plantas
2.
Sci Total Environ ; 926: 171832, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38521263

RESUMO

The effect of global climate change on plant-pollinator interaction is not limited to changes in phenology and richness within communities but also includes the spatial mismatch caused by the inconsistency of geographical distribution changes. Subsequently, the pollinator interaction network may be remodeled or even disrupted. In this study, we simulated the suitable habitat niche of 15 Rhododendron species and their eight pollinator species as well as their overlapping versus geographical mismatch under the current and three future climate change scenarios in 2090s, using MaxEnt. Results showed that the suitable habitat of all Rhododendron species would decrease in 2090s. In particular, 10, 8, and 13 Rhododendron-pollinator assemblages would have a reduced spatial match region under the climate change scenarios, mainly due to the contraction of the suitable habitat of Rhododendron species. The results provide novel insights into the response of plant-pollinator interactions to global warming, useful to prioritize conservation actions of alpine plant ecosystems.


Assuntos
Ecossistema , Rhododendron , Mudança Climática , Rhododendron/fisiologia , Aquecimento Global , Plantas
3.
Genes (Basel) ; 15(1)2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38255000

RESUMO

Phyllosticta yuccae is an important plant pathogen causing leaf spot disease in Yucca gigantea Lem. It is imperative to note that the amount of information available about the mitogenome of this subject is severely limited. This must be addressed immediately, as it is crucial to our understanding and progress in this field. To better understand the mitogenomic characteristics of P. yuccae, we conducted its sequencing by MGISEQ. Afterwards, the mitogenome was assembled and annotated. The mitogenomic characteristics and phylogenetic placement of the P. yuccae strain KUMCC 6213 were analyzed. The study revealed that the mitogenome of P. yuccae is a circular DNA molecule, consisting of 178,540 base pairs. It contains a total of 64 genes, including 14 protein-coding genes (PCGs), 26 transfer RNA genes (tRNA), 2 ribosomal RNA genes (rRNA), and 22 open reading frame genes (ORF), accounting for 80.98% of the total size. Repetitive sequences accounted for 15.42% of the mitogenome. The analysis of codon usage indicated that the codon UUA was the most commonly utilized, whereas the amino acid Leu was the most frequently employed. A comparative analysis of mitogenomes between P. yuccae and Macrophomina phaseolina (Tassi) Goid. showed notable variations in the position and size of gene clusters, with cox1, nad4, and nad4L genes exhibiting relatively low conservation. Phylogenetic analysis based on the 14 PCGs revealed that P. yuccae has the closest genetic relationship with M. phaseolina (Botryosphaeriaceae, Botryosphaeriales). This study first reports the mitogenome of P. yuccae and validates its phylogenetic placement. The findings enhance the knowledge of mitogenomes in Botryosphaeriales, offering novel perspectives on the genetics and evolution of the plant pathogen P. yuccae. This is crucial for the accurate prevention and management of leaf spot disease in Y. gigantea.


Assuntos
Aminoácidos , Ascomicetos , Uso do Códon , Filogenia , Conhecimento
4.
Chemosphere ; 340: 139933, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37625492

RESUMO

Salinization in freshwater lakes is becoming a serious global environmental problem, especially in lakes of plateaus such as south-western plateau of China. However, limited information is available about the molecular response of freshwater hydrophytes to salinity under multiple stress. In the present study, a weighted gene co-expression network (WGCNA) was used to identify the modules of co-expressed genes in the physiological and biochemical indicators of Pistia stratiotes to determine its molecular response to salinity (NaCl) alone and when combined with cadmium (Cd). The physiological and biochemical indicators showed that P. stratiotes improved its salt tolerance by enhancing photosynthetic abilities, reducing oxidative stress, and inducing osmoprotectant generation. Morever, addition of NaCl reduced the Cd accumulation in P. stratiotes. Transcriptome and WGCNA analysis revealed that the pathways of alpha-linolenic acid metabolism, ribosomal, flavonoid biosynthesis, and phenylpropanoid biosynthesis were significantly enriched in both treatments. Genes associated with photosynthesis-antenna proteins, nitrogen metabolism, and the acid cycle pathways were only expressed under salinity stress alone, while the proteasome pathway was only significantly enriched in the combined salinity and Cd treatment. Our findings provide novel insights into the effects of salinization on aquatic plants in freshwater ecosystems and the management of aquatic ecosystems under global change.


Assuntos
Cádmio , Hydrocharitaceae , Cádmio/toxicidade , Ecossistema , Salinidade , Cloreto de Sódio , Lagos
6.
Microsc Res Tech ; 86(11): 1496-1509, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37341239

RESUMO

The seed morphology of 40 taxa within the genus Hypericum (Hypericaceae) from China, representing 9 sections of the genus, was examined using both Light and Scanning Electron Microscopy to evaluate the taxonomic relevance of macro- and micro-morphological features. Details articulating variation in seed size, color, shape, appendages, and seed coat ornamentation are described, illustrated, and compared, and their taxonomic importance is discussed. Seeds were generally brown in color and cylindric-ellipsoid to prolonged cylindric in shape. Seed size displayed wide variation, ranging from 0.37-1.91 mm in length and 0.12-0.75 mm in width. Seed appendages were observed as a characteristic morphological feature. Seed surface ornamentation has high phenotypic plasticity, and four types (reticulate, foveolate, papillose, and ribbed) can be recognized. In general, seed color and shape have limited taxonomic significance. However, some other features represent informative characters that can be used efficiently in distinguishing the studied taxa at the section and/or species levels. The findings illustrate that considerable taxonomic knowledge can be obtained by investigating the seed features of Hypericum, and the use of Scanning Electron Microscopy can reveal inconspicuous morphological affinities among species and play a role in taxonomic and systematic studies of the genus Hypericum. RESEARCH HIGHLIGHTS: Macro- and micro-morphological features of seeds of 40 Hypericum taxa from China were examined using Light and Scanning Electron Microscopy, providing the first broad study regarding seed morphology for Hypericum from China. Details and variations of seed size, shape, color, surface ornamentation, and appendages are fully presented. Seed features and their variation have important taxonomic significance at the section and/or species levels within Hypericum.


Assuntos
Clusiaceae , Hypericum , Microscopia Eletrônica de Varredura , Sementes/anatomia & histologia , China
7.
Front Plant Sci ; 13: 896691, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693180

RESUMO

Increasing severity of drought stress due to global change and extreme weather has been affecting the biodiversity, function, and stability of forest ecosystems. However, despite being an important component in the alpine and subalpine vegetation in forest ecosystems, Rhododendron species have been paid rare attention in the study of molecular mechanism of tolerance or response to drought. Herein, we investigated the correlation of transcriptomic changes with the physiological and biochemical indicators of Rhododendron rex under drought stress by using the co-expression network approach and regression analysis. Compared with the control treatment, the number of significantly differentially expressed unigenes (DEGs) increased with the degree of drought stress. The DEGs were mainly enriched in the cell wall metabolic process, signaling pathways, sugar metabolism, and nitrogen metabolism. Coupled analysis of the transcriptome, physiological, and biochemical parameters indicated that the metabolic pathways were highly correlated with the physiological and biochemical indicators under drought stress, especially the chlorophyll fluorescence parameters, such as the actual photosynthetic efficiency of photosystem II, electron transport rate, photochemical quenching coefficient, and the maximum quantum efficiency of photosystem II photochemistry. The majority of the response genes related to the metabolic pathways, including photosynthesis, sugar metabolism, and phytohormone signal pathway, were highly expressed under drought stress. In addition, genes associated with cell wall, pectin, and galacturonan metabolism also played crucial roles in the response of R. rex to drought stress. The results provided novel insight into the molecular response of the alpine woody species under drought stress and may improve the understanding of the response of forest ecosystems to the global climate change.

8.
Tree Physiol ; 42(5): 1100-1113, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-34850945

RESUMO

Understanding the molecular mechanisms and evolutionary process of plant adaptation to the heterogeneous environment caused by altitude gradients in plateau mountain ecosystems can provide novel insight into species' responses to global changes. Flower color is the most conspicuous and highly diverse trait in nature. Herein, the gene expression patterns, evolutionary adaptation and metabolites changes of different-colored flowers of alpine Rhododendron L. species along altitude gradients were investigated based on a combined analysis of transcriptomics and metabolomics. Differentially expressed genes were found to be related to the biosynthesis of carbohydrates, fatty acids, amino acids and flavonoids, suggesting their important roles in the altitude adaptability of Rhododendron species. The evolution rate of high-altitude species was faster than that of low-altitude species. Genes related to DNA repair, mitogen-activated protein kinase and ABA signal transduction, and lipoic acid and propanoate metabolism were positively selected in the flowers of high-altitude Rhododendron species and those associated with carotenoid biosynthesis pathway, ABA signal transduction and ethylene signal transduction were positively selected in low-altitude species. These results indicated that the genes with differentiated expressions or functions exhibit varying evolution during the adaptive divergence of heterogeneous environment caused by altitude gradients. Flower-color variation might be attributed to the significant differences in gene expression or metabolites related to sucrose, flavonoids and carotenoids at the transcription or metabolism levels of Rhododendron species. This work suggests that Rhododendron species have multiple molecular mechanisms in their adaptation to changing environments caused by altitude gradients.


Assuntos
Rhododendron , Altitude , Ecossistema , Flavonoides/metabolismo , Flores/genética , Flores/metabolismo , Metabolômica , Rhododendron/genética , Rhododendron/metabolismo , Transcriptoma
9.
Mitochondrial DNA B Resour ; 6(6): 1772-1774, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34104769

RESUMO

Trachycarpus nanus is an endangered plant that is endemic to southwest of China. In the present study, the complete chloroplast genome of this species was assembled and characterized using whole genome next-generation sequencing. The complete chloroplast genome showed a circular genome of 158,713 bp size with 36.6% GC content. The genome is of typical structure and contain a pair of inverted repeat (IR) regions with 27,240 bp, separated by one large single-copy (LSC) with 86,395 bp, and one small single-copy (SSC) regions with 17,838 bp. The genome contained 132 genes, including 86 protein-coding genes, 8 rRNA genes and 38 tRNA genes. A phylogenetic tree reconstructed based on 21 chloroplast genomes reveals that Trachycarpus nanus is most related with Chamaerops humilis. The information provides important genetic basis for the species' future studies on phylogenetic and utilization.

10.
Ecotoxicol Environ Saf ; 203: 111007, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888586

RESUMO

Soil acidification is one of the crucial global environmental problems, affecting sustainable land use, crop yield, and ecosystem stability. Previous research reported the tolerance of crops to acid soil stress. However, the molecular response of woody plant to acid conditions remains largely unclear. Rhododendron L. is a widely distributed woody plant genus and prefers to grow in acidic soils. Herein, weighted gene coexpression network analysis was performed on R. protistum var. giganteum seedlings subjected to five pH treatments (3.5, 4.5, 5.5, 6.0, 7.0), and their ecophysiological characteristics were determined for the identification of their molecular responses to acidic environments. Through pairwise comparison, 855 differentially expressed genes (DEGs) associated with photosynthesis, cell wall, and phenylpropanoid metabolism were identified. Most of the DEGs related to photosynthesis and cell wall were up-regulated after pH 4.5 treatment. Results implied that the species improves its photosynthetic abilities and changes its cell wall characteristics to adapt to acidic conditions. Weighted gene co-expression network analyses showed that most of the hub genes were annotated to the biosynthetic pathways of ribosomal proteins and photosynthesis. Expression pattern analysis showed that genes encoding subunit ribosomal proteins decreased at pH 7.0 treatment, suggesting that pH 7.0 treatment led to cell injury in the seedlings. The species regulates protein synthesis in response to high pH stress (pH 7.0). The present study revealed the molecular response mechanism of woody plant R. protistum var. giganteum to acid environments. These findings can be useful in enriching current knowledge of how woody species adapt to soil acidification under global environmental changes.


Assuntos
Ácidos/farmacologia , Parede Celular/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Madeira/efeitos dos fármacos , Parede Celular/genética , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Fotossíntese/genética , Plântula/efeitos dos fármacos , Plântula/metabolismo , Solo/química , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Madeira/genética , Madeira/metabolismo
11.
Plants (Basel) ; 9(3)2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32156013

RESUMO

Genetic diversity is vital to the sustainable utilization and conservation of plant species. Rhododendron rex subsp. rex Lévl. is an endangered species endemic to the southwest of China. Although the natural populations of this species are facing continuous decline due to the high frequency of anthropogenic disturbance, the genetic information of R. rex subsp. rex is not yet elucidated. In the present study, 10 pairs of microsatellite markers (nSSRs) and three pairs of chloroplast DNA (cpDNAs) were used in the elucidation of the genetic diversity, population structure, and demographic history of 11 R. rex subsp. rex populations. A total of 236 alleles and 12 haplotypes were found. A moderate genetic diversity within populations (HE = 0.540 for nSSRs, Hd = 0.788 for cpDNA markers), high historical and low contemporary gene flows, and moderate genetic differentiation (nSSR: FST = 0.165***; cpDNA: FST = 0.841***) were detected among the R. rex subsp. rex populations. Genetic and geographic distances showed significant correlation (p < 0.05) determined by the Mantel test. The species exhibited a conspicuous phylogeographical structure among the populations. Using the Bayesian skyline plot and species distribution models, we found that R. rex subsp. rex underwent a population demography contraction approximately 50,000-100,000 years ago. However, the species did not experience a recent population expansion event. Thus, habitat loss and destruction, which result in a population decline and species inbreeding depression, should be considered in the management and conservation of R. rex subsp. rex.

12.
Mitochondrial DNA B Resour ; 4(2): 3246-3247, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-33365939

RESUMO

Cinnamomum pittosporoides is an important timber plant endemic to southwest of China. In the present study, we sequenced the complete chloroplast genome of C. pittosporoides and used the data to reveal the species phylogenetic in Lauraceae. The complete chloroplast genome showed a circular genome of 152,730 bp size with 39.2% GC content. The genome is of typical structure and contains a pair of inverted repeat (IR) regions with 20,074 bp, separated by one large single-copy (LSC) with 93,722 bp and one small single-copy (SSC) regions with 18,860 bp. The genome contained 116 genes, including 82 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. A phylogenetic tree reconstructed based on 26 chloroplast genomes reveals that C. pittosporoides is most related with C. chago in Lauraceae.

13.
Mitochondrial DNA B Resour ; 5(1): 136-137, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33366456

RESUMO

Typha orientalis is an important wetland macrophyte native to the eastern parts of Asia and Oceania. Herein, the complete chloroplast genome of this species was assembled and characterized using whole-genome next-generation sequencing. The complete chloroplast genome showed a circular genome of 160,969 bp size with 36.6% GC content. The genome is of typical structure and contains a pair of inverted repeat (IR) regions with 26,691 bp, separated by one large single-copy (LSC) with 89,118 bp, and one small single-copy (SSC) regions with 18,469 bp. The genome contained 132 genes, including 86 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. A phylogenetic tree reconstructed based on 15 chloroplast genomes reveals that T. orientalis is most related to Typha latifolia.

14.
Mitochondrial DNA B Resour ; 5(1): 314-316, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33366535

RESUMO

In this study, Cansjera rheedei J. F. Gmelin is an important role in the phylogeny and evolution of Opiliaceae plant. The chloroplast genome of C. rheedei is 144,306 bp in size, with an average GC content of 37.5%. The complete chloroplast genome has a typical quadripartite structure, including a large single copy (LSC) region (82,773 bp) and a small single copy (SSC) region (9745 bp), which were separated a pair of inverted repeats (IRs, 25,894 bp). This plastome contained 101 different genes, including 67 protein-coding genes (PCGs), 30 tRNA genes and four rRNA genes. The chloroplast genome of C. rheedei has completed that will be based on the phylogeny and genomic studies in the family Opiliaceae.

15.
Mitochondrial DNA B Resour ; 5(1): 327-328, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33366541

RESUMO

Stuckenia pectinata is widely distributed submerged macrophyte in the world. Herein, the complete chloroplast genome of this species was assembled and characterized using whole genome next-generation sequencing. The complete chloroplast genome showed a circular genome of 156,669 bp size with 36.5% GC content. The genome is of typical structure and contain a pair of inverted repeat (IR) regions with 26,074 bp, separated by one large single-copy (LSC) with 86,285 bp, and one small single-copy (SSC) regions with 18,236 bp. De novo assembly and annotation showed the presence of 131 unique genes with 85 protein-coding genes, 38 tRNA genes, and eight rRNA genes. A maximum-likelihood phylogenomic tree reconstructed based on 15 chloroplast genomes reveals that S. pectinata is most closely related to Zostera marina.

16.
Front Genet ; 9: 505, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30455715

RESUMO

Cinnamomum chago, an endangered species endemic to Yunnan province, possesses large economic and phylogenetic values in Lauraceae. However, the genomic information of this species remains relatively unexplored. In this study, we used RNAseq technology to characterize and annotate the C. chago transcriptome and identify candidate genes involved in special metabolic pathways and gene-associated simple sequence repeats (SSRs) and single-nucleotide polymorphism (SNP). A total of 129,097 unigenes, with a mean length of 667 bp and an N50 length of 1,062 bp, were assembled. Among these genes, 56,887 (44.07%) unigenes were successfully annotated using at least one database. Furthermore, 47 and 46 candidate genes were identified in terpenoid biosynthesis and fatty acid biosynthesis, respectively. A total of 22 candidate genes participated in at least one abiotic stress response of C. chago. Additionally, a total of 25,654 SSRs and 640 SNPs were also identified. Based on these potential loci, 55 novel expressed sequence tag (EST)-SSR primers were successfully developed. This work provides comprehensive transcriptomic data that can be used to establish a valuable information platform for gene prediction, signaling pathway investigation, and molecular marker development for C. chago and other related species. Such a platform can facilitate further studies on germplasm conservation and utilization of Lauraceae species.

17.
Front Plant Sci ; 8: 1664, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29018469

RESUMO

Transcriptome sequences generated by next-generation sequencing (NGS) technologies can be utilized to rapidly detect and characterize a large number of gene-based microsatellites from different plants. Rhododendron rex Lévl. is a perennial woody species from the family Ericaceae and an endangered plant with high ornamental value endemic to Southwestern China. Nevertheless, the genetic and genomic information of R. rex remain unknown. In this study, we performed transcriptome sequencing for R. rex leaf samples, and generated large transcript sequences for functional characterization and development gene-associated SSR markers. A total of 164,242 unigenes were assembled and 115,089 (70.07%) unigenes were successfully annotated in public databases. In addition, a total of 15,314 potential EST-SSRs were identified, and the frequency of SSRs in the R. rex unigenes was 9.32%, with an average of one EST-SSR per 5.65 kb. The most abundant type was repeated di-nucleotide (54.63%), followed by mono- (26.03%) and tri-nucleotide (18.51%) repeats. Based on the SSR-containing sequence, 100 primer pairs were randomly selected and synthesized and used for assessment of the polymorphism. Thirty-six primer pairs were polymorphic and revealed polymorphism among 20 individuals from four R. rex populations. A total of 197 alleles were identified, with an average of 5.472 alleles per locus. The Polymorphism Information Content ranged from 0.154 to 0.870, with a mean of 0.482. The newly developed EST-SSR markers exhibited high transferability (58.33-83.33%) among the six subgenera. Thus, these novel EST-SSR markers developed would provide valuable sequence resources for population structure, genetic diversity analysis, and genetic resource assessments of R. rex and its related species.

18.
PeerJ ; 5: e3435, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28740746

RESUMO

Yunnanopilia longistaminea is an endangered monotypic species belonging to Opiliaceae. This edible plant is an important germplasm source with a high economic value in China if propagation were less difficult. Seed dormancy and germination of this species were investigated to improve propagation. Considering seeds have a fully developed embryo and mature and are dispersed in summer, and radicles and epicotyls emerge the following autumn and next spring, respectively, we hypothesized that Y. longistaminea seeds may undergo physiological epicotyl dormancy. Seed moisture content and viability decreased as dehydration occurred. Thus, the seeds may be recalcitrant. The seed germination of this species involves two stages: radicle emergence and epicotyl (shoot) emergence. The optimum temperature was 28 °C and 28 °C/20 °C to radicle emergence. The optimum GA3 solution for the seeds undergoing shoot emergence was 100 mg L-1. The percentages of shoot emergence in seven and 14 days stratification at 5 °C were slightly higher than those in other groups. This study is the first to describe physiological epicotyl dormancy in Y. longistaminea seeds. Under natural conditions, seeds are subjected to Y. longistaminea a autumn → winter → spring temperature. Warm moist conditions and cold stratification can improve radicle emergence and alleviate epicotyl dormancy, respectively. The duration of cold stratification also significantly affects the epicotyl dormancy release of Y. longistaminea. Optimal dormancy breakage methods are warm (28 °C/20 °C) → cold (5 °C) → GA3(100 mg L-1) → warm (28 °C/20 °C).

19.
Front Plant Sci ; 8: 583, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28484472

RESUMO

Michelia yunnanensis Franch., is a traditional ornamental, aromatic, and medicinal shrub that endemic to Yunnan Province in southwest China. Although the species has a large distribution pattern and is abundant in Yunnan Province, the populations are dramatically declining because of overexploitation and habitat destruction. Studies on the genetic variation and demography of endemic species are necessary to develop effective conservation and management strategies. To generate such knowledge, we used 3 pairs of universal cpDNA markers and 10 pairs of microsatellite markers to assess the genetic diversity, genetic structure, and demographic history of 7 M. yunnanensis populations. We calculated a total of 88 alleles for 10 polymorphic loci and 10 haplotypes for a combined 2,089 bp of cpDNA. M. yunnanensis populations showed high genetic diversity (Ho = 0.551 for nuclear markers and Hd = 0.471 for cpDNA markers) and low genetic differentiation (FST = 0.058). Geographical structure was not found among M. yunnanensis populations. Genetic distance and geographic distance were not correlated (P > 0.05), which indicated that geographic isolation is not the primary cause of the low genetic differentiation of M. yunnanensis. Additionally, M. yunnanensis populations contracted ~20,000-30,000 years ago, and no recent expansion occurred in current populations. Results indicated that the high genetic diversity of the species and within its populations holds promise for effective genetic resource management and sustainable utilization. Thus, we suggest that the conservation and management of M. yunnanensis should address exotic overexploitation and habitat destruction.

20.
Plant Divers ; 38(5): 247-252, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30159473

RESUMO

Cinnamomum chago (family Lauraceae) is an essential source of timber and oil. This plant is narrowly distributed in the western part of the Yunnan Province. In this study, the distribution, habitat, and biological characteristics of C. chago were examined through field investigation. The genetic diversity and the variation of the remnant populations were also studied using the inter-simple sequence repeat technique. Results showed that C. chago is mainly distributed in the upstream tributary mountains of Lancang River in Yunlong County of Yunnan Province. The species distribution exhibited a fragmented pattern with five isolated populations and high-frequency anthropogenic interference. A combination of morphological features (opposite leaves, pinnate leaf veins, absence of glandular fossa, large drupe, small punch, and pollen surface with triangular spike grain, with cushion bumps at the base) indicated that C. chago is a key phylogenetic taxon between the two sections of Asian Cinnamomum plants (Sect. Camphora (Trew) Meissn. and Sect. Cinnamomum). Analysis of the genetic diversity of C. chago indicated that it has a moderately high level of genetic diversity at the population and species levels (populations level: Ne = 1.629, H = 0.348, I = 0.504, and PPB = 83.3%; species level: Ne = 1.864, H = 0.460, I = 0.652, and PPB = 100%). Analysis of molecular variance revealed that 17% of the genetic variation was divided between the populations, whereas 83% was observed within the populations. Based on these results, we suggest the inclusion of C. chago in the Wild Plants with Extremely Small Populations in China. Moreover, the species should be given special attention and protection. Some strategies were proposed for the conservation of the C. chago populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA