RESUMO
Chemotherapy-induced premature ovarian insufficiency (CIPOI) triggers gonadotoxicity in women undergoing cancer treatment, leading to loss of ovarian reserves and subfertility, with no effective therapies available. In our study, fecal microbiota transplantation in a cisplatin-induced POI mouse model reveals that a dysbiotic gut microbiome negatively impacts ovarian health in CIPOI. Multi-omics analyses show a significant decrease in Limosilactobacillus reuteri and its catabolite, ß-resorcylic acid , in the CIPOI group in comparison to healthy controls. Supplementation with L. reuteri or ß-RA mitigates cisplatin-induced hormonal disruptions, morphological damages, and reductions in follicular reserve. Most importantly, ß-RA pre-treatment effectively preserves oocyte function, embryonic development, and fetus health, thereby protecting against chemotherapy-induced subfertility. Our results provide evidence that ß-RA suppresses the nuclear accumulation of sex-determining region Y-box 7, which in turn reduces Bcl-2-associated X activation and inhibits granulosa cell apoptosis. These findings highlight the therapeutic potential of targeting the gut-ovary axis for fertility preservation in CIPOI.
Assuntos
Cisplatino , Limosilactobacillus reuteri , Ovário , Insuficiência Ovariana Primária , Feminino , Animais , Cisplatino/efeitos adversos , Cisplatino/toxicidade , Camundongos , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/patologia , Ovário/efeitos dos fármacos , Ovário/patologia , Ovário/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Transplante de Microbiota Fecal , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Camundongos Endogâmicos C57BL , Antineoplásicos/toxicidade , Antineoplásicos/efeitos adversos , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Modelos Animais de Doenças , InfertilidadeRESUMO
OBJECTIVE: Chronic obstructive pulmonary disease (COPD) is a major cause of global illness and death, most commonly caused by cigarette smoke. The mechanisms of pathogenesis remain poorly understood, limiting the development of effective therapies. The gastrointestinal microbiome has been implicated in chronic lung diseases via the gut-lung axis, but its role is unclear. DESIGN: Using an in vivo mouse model of cigarette smoke (CS)-induced COPD and faecal microbial transfer (FMT), we characterised the faecal microbiota using metagenomics, proteomics and metabolomics. Findings were correlated with airway and systemic inflammation, lung and gut histopathology and lung function. Complex carbohydrates were assessed in mice using a high resistant starch diet, and in 16 patients with COPD using a randomised, double-blind, placebo-controlled pilot study of inulin supplementation. RESULTS: FMT alleviated hallmark features of COPD (inflammation, alveolar destruction, impaired lung function), gastrointestinal pathology and systemic immune changes. Protective effects were additive to smoking cessation, and transfer of CS-associated microbiota after antibiotic-induced microbiome depletion was sufficient to increase lung inflammation while suppressing colonic immunity in the absence of CS exposure. Disease features correlated with the relative abundance of Muribaculaceae, Desulfovibrionaceae and Lachnospiraceae family members. Proteomics and metabolomics identified downregulation of glucose and starch metabolism in CS-associated microbiota, and supplementation of mice or human patients with complex carbohydrates improved disease outcomes. CONCLUSION: The gut microbiome contributes to COPD pathogenesis and can be targeted therapeutically.
Assuntos
Pneumonia , Doença Pulmonar Obstrutiva Crônica , Humanos , Camundongos , Animais , Doença Pulmonar Obstrutiva Crônica/etiologia , Pulmão/metabolismo , Pulmão/patologia , Pneumonia/etiologia , Inflamação/metabolismo , Carboidratos/farmacologiaRESUMO
Hepatocellular carcinoma (HCC) has been linked to the gut microbiota, with recent studies revealing the potential of gut-generated responses to influence several arms of the immune responses relevant to HCC formation. The pro- or anti-tumor effects of specific bacterial strains or gut microbiota-related metabolites, such as bile acids and short-chain fatty acids, have been highlighted in many human and animal studies. The critical role of the gut microbiota in HCC development has spurred interest in modulating the gut microbiota through dietary interventions, probiotics, and fecal microbiota transplantation as a potential strategy to improve liver cancer outcomes. Encouragingly, preclinical and clinical studies have demonstrated that modulation of the gut microbiota can ameliorate liver function, reduce inflammation, and inhibit liver tumor growth, underscoring the potential of this approach to improve HCC outcomes. As research continues to unravel the complex and dynamic mechanisms underlying the gut-liver axis, the development of safe and effective interventions to target this pathway for liver cancer prevention and treatment appears to be on the horizon, heralding a significant advance in our ongoing efforts to combat this devastating disease.
Assuntos
Carcinoma Hepatocelular , Microbioma Gastrointestinal , Neoplasias Hepáticas , Animais , Humanos , Neoplasias Hepáticas/terapia , Carcinoma Hepatocelular/terapia , Ácidos e Sais BiliaresRESUMO
BACKGROUND: The results of human observational studies on the correlation between gut microbiota perturbations and polycystic ovary syndrome (PCOS) have been contradictory. This study aimed to perform the first systematic review and meta-analysis to evaluate the specificity of the gut microbiota in PCOS patients compared to healthy women. METHODS: Literature through May 22, 2023, was searched on PubMed, Web of Science, Medline, Embase, Cochrane Library, and Wiley Online Library databases. Unreported data in diversity indices were filled by downloading and processing raw sequencing data. Systematic review inclusion: original studies were eligible if they applied an observational case-control design, performed gut microbiota analysis and reported diversity or abundance measures, sampled general pre-menopausal women with PCOS, and are longitudinal studies with baseline comparison between PCOS patients and healthy females. Systematic review exclusion: studies that conducted interventional or longitudinal comparisons in the absence of a control group. Two researchers made abstract, full-text, and data extraction decisions, independently. The Joanna Briggs Institute Critical Appraisal Checklist was used to assess the methodologic quality. Hedge's g standardized mean difference (SMD), confidence intervals (CIs), and heterogeneity (I2) for alpha diversity were calculated. Qualitative syntheses of beta-diversity and microbe alterations were performed. RESULTS: Twenty-eight studies (n = 1022 patients, n = 928 control) that investigated gut microbiota by collecting stool samples were included, with 26 and 27 studies having provided alpha-diversity and beta-diversity results respectively. A significant decrease in microbial evenness and phylogenetic diversity was observed in PCOS patients when compared with control participants (Shannon index: SMD = - 0.27; 95% CI, - 0.37 to - 0.16; phylogenetic diversity: SMD = - 0.39; 95% CI, -- 0.74 to - 0.03). We also found that reported beta-diversity was inconsistent between studies. Despite heterogeneity in bacterial relative abundance, we observed depletion of Lachnospira and Prevotella and enrichment of Bacteroides, Parabacteroides, Lactobacillus, Fusobacterium, and Escherichia/Shigella in PCOS. Gut dysbiosis in PCOS, which might be characterized by the reduction of short-chain fatty acid (SCFA)-producing and bile-acid-metabolizing bacteria, suggests a shift in balance to favor pro-inflammatory rather than anti-inflammatory bacteria. CONCLUSIONS: Gut dysbiosis in PCOS is associated with decreased diversity and alterations in bacteria involved in microbiota-host crosstalk. TRIAL REGISTRATION: PROSPERO registration: CRD42021285206, May 22, 2023.
Assuntos
Microbioma Gastrointestinal , Microbiota , Síndrome do Ovário Policístico , Humanos , Feminino , Disbiose , FilogeniaRESUMO
COVID-19 induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently a pandemic and it has led to more than 620 million patients with 6.56 million deaths globally. Males are more susceptible to COVID-19 infection and associated with a higher chance to develop severe COVID-19 than females. Aged people are at a high risk of COVID-19 infection, while young children have also increased cases. COVID-19 patients typically develop respiratory system pathologies, however symptoms in the gastrointestinal (GI) tract are also very common. Inflammatory cell recruitments and their secreted cytokines are found in the GI tract in COVID-19 patients. Microbiota changes are the key feature in COVID-19 patients with gut injury. Here, we review all current known mechanisms of COVID-19-induced gut injury, and the most acceptable one is that SARS-CoV-2 binds to angiotensin-converting enzyme 2 (ACE2) receptor on host cells in the GI tract. Interestingly, inflammatory bowel disease (IBD) is an inflammatory disorder, but the patients with IBD do not have the increased risk to develop COVID-19. There is currently no cure for COVID-19, but anti-viruses and monoclonal antibodies reduce viral load and shorten the recovery time of the disease. We summarize current therapeutics that target symptoms in the GI tract, including probiotics, ACE2 inhibitors and nutrients. These are promising therapeutic options for COVID-19-induced gut injury.
Assuntos
COVID-19 , Gastroenteropatias , Feminino , Humanos , Masculino , Enzima de Conversão de Angiotensina 2 , Anticorpos Monoclonais , COVID-19/fisiopatologia , Citocinas , Doenças Inflamatórias Intestinais , SARS-CoV-2 , Microbioma Gastrointestinal , Gastroenteropatias/virologiaRESUMO
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. Recently, the gut microbiota has been shown to be closely linked to modulation of the immune and inflammatory responses, hence its potential as a therapeutic target. Although still under intense investigation, there exists a 'gut-liver axis' that links changes in the gut to the liver. In this regard, composition of gut microbiota and related metabolites, such as bile acids and short-chain fatty acids, have been shown to orchestrate key immune-metabolic events in liver disease and liver cancer. As hepatic immune cells are important determinants of antitumor responses, it is now increasingly recognized that the gut-liver axis plays a key role in influencing the intrahepatic immune response in HCC to favor a pro- or antitumor immune milieu. Hence, modulation of gut microbiota is potentially an attractive option to reinvigorate the antitumor responses. In this regard, promising evidence from melanoma preclinical and clinical studies has demonstrated the efficacy of gut-based intervention in reinvigorating the antitumor responses and improving responses to immunotherapy. However, the role of gut-based interventions as a therapeutic option in HCC remains to be elucidated. This review details how the gut microbiota and bacterial metabolites affect gut barrier function and ultimately immune response in HCC and raises the question of the potential of gut-based interventions as an adjunct therapy for patients with HCC receiving immunotherapy.
RESUMO
BACKGROUND: There is mounting evidence for the therapeutic use of faecal microbiota transplant (FMT) in numerous chronic inflammatory diseases. Germ free mice are not always accessible for FMT research and hence alternative approaches using antibiotic depletion prior to FMT in animal studies are often used. Hence, there is a need for standardising gut microbiota depletion and FMT methodologies in animal studies. The aim of this study was to refine gut decontamination protocols prior to FMT engraftment and determine efficiency and stability of FMT engraftment over time. METHODS: Male C57BL/6J mice received an antibiotic cocktail consisting of ampicillin, vancomycin, neomycin, and metronidazole in drinking water for 21 days ad libitum. After antibiotic treatment, animals received either FMT or saline by weekly oral gavage for 3 weeks (FMT group or Sham group, respectively), and followed up for a further 5 weeks. At multiple timepoints throughout the model, stool samples were collected and subjected to bacterial culture, qPCR of bacterial DNA, and fluorescent in-situ hybridisation (FISH) to determine bacterial presence and load. Additionally, 16S rRNA sequencing of stool was used to confirm gut decontamination and subsequent FMT engraftment. RESULTS: Antibiotic treatment for 7 days was most effective in gut decontamination, as evidenced by absence of bacteria observed in culture, and reduced bacterial concentration, as determined by FISH as well as qPCR. Continued antibiotic administration had no further efficacy on gut decontamination from days 7 to 21. Following gut decontamination, 3 weekly doses of FMT was sufficient for the successful engraftment of donor microbiota in animals. The recolonised animal gut microbiota was similar in composition to the donor sample, and significantly different from the Sham controls as assessed by 16S rRNA sequencing. Importantly, this similarity in composition to the donor sample persisted for 5 weeks following the final FMT dose. CONCLUSIONS: Our results showed that 7 days of broad-spectrum antibiotics in drinking water followed by 3 weekly doses of FMT provides a simple, reliable, and cost-effective methodology for FMT in animal research.
RESUMO
Ulcerative colitis is an inflammatory disease of the colon that is associated with colonic neutrophil accumulation. Recent evidence indicates that diet alters the composition of the gut microbiota and influences host-pathogen interactions. Specifically, bacterial fermentation of dietary fiber produces metabolites called short-chain fatty acids (SCFAs), which have been shown to protect against various inflammatory diseases. However, the effect of fiber deficiency on the key initial steps of inflammation, such as leukocyte-endothelial cell interactions, is unknown. Moreover, the impact of fiber deficiency on neutrophil recruitment under basal conditions and during inflammation in vivo is unknown. Herein, we hypothesized that a fiber-deficient diet promotes an inflammatory state in the colon at baseline and predisposes the host to more severe colitis pathology. Mice fed a no-fiber diet for 14 days showed significant changes in the gut microbiota and exhibited increased neutrophil-endothelial interactions in the colonic microvasculature. Although mice fed a no-fiber diet alone did not have observable colitis-associated symptoms, these animals were highly susceptible to low dose (0.5%) dextran sodium sulphate (DSS)-induced model of colitis. Supplementation of the most abundant SCFA, acetate, prevented no-fiber diet-mediated enrichment of colonic neutrophils and colitis pathology. Therefore, dietary fiber, possibly through the actions of acetate, plays an important role in regulating neutrophil recruitment and host protection against inflammatory colonic damage in an experimental model of colitis.
Assuntos
Quimiotaxia de Leucócito/imunologia , Colite/etiologia , Fibras na Dieta/deficiência , Microbioma Gastrointestinal , Infiltração de Neutrófilos/imunologia , Animais , Biomarcadores , Adesão Celular , Colite/metabolismo , Colite/patologia , Sulfato de Dextrana/efeitos adversos , Dieta , Modelos Animais de Doenças , Células Endoteliais , Contagem de Leucócitos , Masculino , Metagenômica/métodos , Camundongos , RNA Ribossômico 16SRESUMO
Chronic obstructive pulmonary disease (COPD) represents a heightened inflammatory response in the lung generally resulting from tobacco smoking-induced recruitment and activation of inflammatory cells and/or activation of lower airway structural cells. Several mediators can modulate activation and recruitment of these cells, particularly those belonging to the chemokines (conventional and atypical) family. There is emerging evidence for complex roles of atypical chemokines and their receptors (such as high mobility group box 1 (HMGB1), antimicrobial peptides, receptor for advanced glycosylation end products (RAGE) or toll-like receptors (TLRs)) in the pathogenesis of COPD, both in the stable disease and during exacerbations. Modulators of these pathways represent potential novel therapies for COPD and many are now in preclinical development. Inhibition of only a single atypical chemokine or receptor may not block inflammatory processes because there is redundancy in this network. However, there are many animal studies that encourage studies for modulating the atypical chemokine network in COPD. Thus, few pharmaceutical companies maintain a significant interest in developing agents that target these molecules as potential antiinflammatory drugs. Antibody-based (biological) and small molecule drug (SMD)-based therapies targeting atypical chemokines and/or their receptors are mostly at the preclinical stage and their progression to clinical trials is eagerly awaited. These agents will most likely enhance our knowledge about the role of atypical chemokines in COPD pathophysiology and thereby improve COPD management.
Assuntos
Proteína HMGB1 , Doença Pulmonar Obstrutiva Crônica , Animais , Quimiocinas , Pulmão , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/etiologia , Receptores de QuimiocinasRESUMO
Respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), lung fibrosis, and lung cancer, pose a huge socio-economic burden on society and are one of the leading causes of death worldwide. In the past, culture-dependent techniques could not detect bacteria in the lungs, therefore the lungs were considered a sterile environment. However, the development of culture-independent techniques, particularly 16S rRNA sequencing, allowed for the detection of commensal microbes in the lung and with further investigation, their roles in disease have since emerged. In healthy individuals, the predominant commensal microbes are of phylum Firmicutes and Bacteroidetes, including those of the genera Veillonella and Prevotella. In contrast, pathogenic microbes (Haemophilus, Streptococcus, Klebsiella, Pseudomonas) are often associated with lung diseases. There is growing evidence that microbial metabolites, structural components, and toxins from pathogenic and opportunistic bacteria have the capacity to stimulate both innate and adaptive immune responses, and therefore can contribute to the pathogenesis of lung diseases. Here we review the multiple mechanisms that are altered by pathogenic microbiomes in asthma, COPD, lung cancer, and lung fibrosis. Furthermore, we focus on the recent exciting advancements in therapies that can be used to restore altered microbiomes in the lungs.
RESUMO
The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome, is one of the most well-characterized inflammasomes, activated by pathogen-associated molecular patterns and damage-associated molecular patterns, including from commensal or pathogenic bacterial and viral infections. The NLRP3 inflammasome promotes inflammatory cell recruitment and regulates immune responses in tissues such as the gastrointestinal tract and the lung, and is involved in many diseases that affect the gut and lung. Recently, the microbiome in the gut and the lung, and the crosstalk between these organs (gut-lung axis), has been identified as a potential mechanism that may influence disease in a bidirectional manner. In this review, we focus on themes presented in this area at the 2019 World Congress on Inflammation. We discuss recent evidence on how the microbiome can affect NLRP3 inflammasome responses in the gut and lung, the role of this inflammasome in regulating gut and lung inflammation in disease, and its potential role in the gut-lung axis. We highlight the exponential increase in our understanding of the NLRP3 inflammasome due to the synthesis of the NLRP3 inflammasome inhibitor, MCC950, and propose future studies that may further elucidate the roles of the NLRP3 inflammasome in gut and lung diseases.
Assuntos
Microbioma Gastrointestinal/imunologia , Inflamassomos/imunologia , Inflamação/imunologia , Intestinos/imunologia , Pulmão/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Envelhecimento/imunologia , Poluentes Atmosféricos/toxicidade , Animais , Asma/imunologia , Fumar Cigarros/imunologia , Colite/imunologia , Colite/microbiologia , Colite/terapia , Disbiose/imunologia , Transplante de Microbiota Fecal , Furanos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Indenos , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Pneumonia Bacteriana/imunologia , Pneumonia Viral/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Organismos Livres de Patógenos Específicos , Sulfonamidas , Sulfonas/farmacologia , SimbioseRESUMO
Invariant natural killer T (iNKT) cells and neutrophils play an increasingly important part in the pathogenesis of inflammatory diseases, but their precise roles in modulating colitis remain unclear. Previous studies have shown important interplays between host immune system and the gut microbiota, and the resulting modulation of inflammation. However, the interactions between iNKT cells, neutrophil and gut microbiota in regulating colitis pathology are poorly understood. Here, we show iNKT cell-deficient Jα18-/- mice display reduced dextran sodium sulfate (DSS)-induced colonic inflammation compared to their wild-type (WT) counterparts. We reveal that there is a distinct gut microbiota shaped by the absence of iNKT cells, which comprises of microorganisms that are associated with protection from colonic inflammation. Additionally, the reduced inflammation in Jα18-/- mice was correlated with increased expressions of neutrophil chemoattractant (Cxcl1 and Cxcl2) and increased neutrophil recruitment. However, these neutrophils were recruited to the colon at day 3 of our model, prior to observable clinical signs at day 5. Further analysis shows that these neutrophils, primed by the microbiota shaped by the lack of iNKT cells, exhibit anti-inflammatory and immune-modulatory properties. Indeed, depletion of neutrophils in DSS-treated Jα18-/- mice demonstrates that neutrophils confer an anti-colitogenic effect in the absence of iNKT cells. Thus, our data supports a changing dogma that neutrophils possess important regulatory roles in inflammation and highlights the complexity of the iNKT cell-microbiota-neutrophil axis in regulating colonic inflammation.
Assuntos
Colite/imunologia , Microbioma Gastrointestinal/imunologia , Inflamação , Intestinos/imunologia , Células T Matadoras Naturais/imunologia , Infiltração de Neutrófilos/imunologia , Animais , Quimiocina CXCL1/genética , Quimiocina CXCL1/imunologia , Quimiocina CXCL2/genética , Quimiocina CXCL2/imunologia , Colite/induzido quimicamente , Sulfato de Dextrana , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Several long non-coding RNA (lncRNA) might be correlated with the prognosis of colorectal cancer (CRC) and serve as a diagnostic and prognostic biomarker. However, the exact expression pattern of small nucleolar RNA host gene 12 (SNHG12) in colorectal cancer and its clinical significance remains unclear. The level of SNHG12 was detected by qRT-PCR in CRC tissues and CRC cells. MTT assay and colony formation assay were performed to examine the cell proliferation of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. Flow cytometry technology was used to detect cell cycle and cell apoptosis of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. The protein level of cell cycle progression-related molecules, including cyclin-dependent kinases (CDK4, CDK6), cyclin D1 (CCND1) and cell apoptosis-related molecule caspase 3 was detected by western blot. The effect of SNHG12 knockdown was examined in vivo. Increased levels of SNHG12 were observed in CRC tissues and in CRC cells. SNHG12 promoted the cell proliferation of CRC cells. In addition, SNHG12 overexpression boosted the cell cycle progression of SW480 cells transfected with pcDNA-SNHG12 and SNHG12 knockdown inhibited the cell cycle progression of HT29 cells transfected with si-SNHG12. SNHG12 also inhibited the cell apoptosis of CRC cells. We also found that SNHG12 increased the expression of cell cycle-related proteins and suppressed the expression of caspase 3. Our results suggest that SNHG12 promoted cell growth and inhibited cell apoptosis in CRC cells, indicating that SNHG12 might be a useful biomarker for colorectal cancer.
Assuntos
Humanos , Apoptose , Proliferação de Células/fisiologia , Neoplasias Colorretais/metabolismo , RNA Longo não Codificante/fisiologia , Western Blotting , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Reação em Cadeia da Polimerase em Tempo Real , Regulação para CimaRESUMO
The advent of vaccination and improved hygiene have eliminated many of the deadly infectious pathogens in developed nations. However, the incidences of inflammatory diseases, such as inflammatory bowel disease, asthma, obesity and diabetes are increasing dramatically. Research in the recent decades revealed that it is indeed the lack of early childhood microbial exposure, increase use of antibiotics, as well as increase consumption of processed foods high in carbohydrates and fats, and lacking fibre, which wreak havoc on the proper development of immunity and predispose the host to elevated inflammatory conditions. Although largely unexplored and under-appreciated until recent years, these factors impact significantly on the composition of the gut microbiota (a collection of microorganisms that live within the host mucosal tissue) and inadvertently play intricate and pivotal roles in modulating an appropriate host immune response. The suggestion that shifts in the composition of host microbiota is a risk factor for inflammatory disease raises an exciting opportunity whereby the microbiota may also present as a potential modifiable component or therapeutic target for inflammatory diseases. This review provides insights into the interactions between the microbiota and the immune system, how these affect disease phenotypes, and explore current and emerging therapies that target the gut microbiota as potential treatment for inflammatory diseases.
RESUMO
Asthma is prevalent in Western countries, and recent explanations have evoked the actions of the gut microbiota. Here we show that feeding mice a high-fibre diet yields a distinctive gut microbiota, which increases the levels of the short-chain fatty acid, acetate. High-fibre or acetate-feeding led to marked suppression of allergic airways disease (AAD, a model for human asthma), by enhancing T-regulatory cell numbers and function. Acetate increases acetylation at the Foxp3 promoter, likely through HDAC9 inhibition. Epigenetic effects of fibre/acetate in adult mice led us to examine the influence of maternal intake of fibre/acetate. High-fibre/acetate feeding of pregnant mice imparts on their adult offspring an inability to develop robust AAD. High fibre/acetate suppresses expression of certain genes in the mouse fetal lung linked to both human asthma and mouse AAD. Thus, diet acting on the gut microbiota profoundly influences airway responses, and may represent an approach to prevent asthma, including during pregnancy.