Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
CNS Neurosci Ther ; 30(6): e14804, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38887183

RESUMO

BACKGROUND AND OBJECTIVE: Spinal muscular atrophy (SMA) is one of the most common monogenic neuromuscular diseases, and the pathogenesis mechanisms, especially the brain network topological properties, remain unknown. This study aimed to use individual-level morphological brain network analysis to explore the brain neural network mechanisms in SMA. METHODS: Individual-level gray matter (GM) networks were constructed by estimating the interregional similarity of GM volume distribution using both Kullback-Leibler divergence-based similarity (KLDs) and Jesen-Shannon divergence-based similarity (JSDs) measurements based on Automated Anatomical Labeling 116 and Hammersmith 83 atlases for 38 individuals with SMA types 2 and 3 and 38 age- and sex-matched healthy controls (HCs). The topological properties were analyzed by the graph theory approach and compared between groups by a nonparametric permutation test. Additionally, correlation analysis was used to assess the associations between altered topological metrics and clinical characteristics. RESULTS: Compared with HCs, although global network topology remained preserved in individuals with SMA, brain regions with altered nodal properties mainly involved the right olfactory gyrus, right insula, bilateral parahippocampal gyrus, right amygdala, right thalamus, left superior temporal gyrus, left cerebellar lobule IV-V, bilateral cerebellar lobule VI, right cerebellar lobule VII, and vermis VII and IX. Further correlation analysis showed that the nodal degree of the right cerebellar lobule VII was positively correlated with the disease duration, and the right amygdala was negatively correlated with the Hammersmith Functional Motor Scale Expanded (HFMSE) scores. CONCLUSIONS: Our findings demonstrated that topological reorganization may prioritize global properties over nodal properties, and disrupted topological properties in the cortical-limbic-cerebellum circuit in SMA may help to further understand the network pathogenesis underlying SMA.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Feminino , Masculino , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Adulto , Atrofias Musculares Espinais da Infância/patologia , Adulto Jovem , Adolescente , Substância Cinzenta/patologia , Substância Cinzenta/diagnóstico por imagem , Criança , Rede Nervosa/patologia , Rede Nervosa/diagnóstico por imagem
2.
Eur J Pediatr ; 183(3): 1381-1388, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38165463

RESUMO

This study investigated the changes in brain gray and white matter structure in SMA patients and their correlation with the severity of the disease. A total of 43 SMA patients (including 22 type II and 21 type III SMA patients) and 37 healthy controls were evaluated by MRI. The gray matter volume, gray matter thickness, gray matter surface area, and white matter volume of designated brain regions automatically segmented by FreeSurfer, were compared. We evaluate clinical characteristics of SMA and study the correlation between clinical characteristics and structural changes. SMA showed significant bilateral cortical superficial area loss in the frontal, parietal, and temporal lobes and global white matter volume decreases. Moreover, these patients were also found with an increased mean thickness of entire brain and right gray matter. An increased right postcentral gyrus superficial area, right central sulcus volume, and white matter volume of the right postcentral were associated with higher HFMSE scores. CONCLUSION: Type 2 and 3 children SMA had extensive, multifocal, symmetrical gray and white matter alterations. Postcentral gyrus degeneration of SMA was associated with the severity of muscular atrophy. The lack of SMN protein possibly interacted with cerebellar structural changes in somatosensory areas. WHAT IS KNOWN: • MRI has found brain changes in SMA patients, however, there is no unified conclusion and lack of correlation with clinical degree in children SMA with type 2-3. WHAT IS NEW: • Type II and II children SMA had extensive, multifocal, symmetrical gray and white matter alterations. Postcentral gyrus degeneration of SMA was associated with the severity of muscular atrophy. Cerebellar structural changes in somatosensory areas may attribute to the lack of SMN protein.


Assuntos
Substância Branca , Criança , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética , Atrofia Muscular
3.
J Mol Med (Berl) ; 101(1-2): 125-138, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36478125

RESUMO

Previous evidences have demonstrated that anti-tumor effect of high-dose ascorbic acid is associated with the generation of reactive oxygen species (ROS) via autoxidation. Hypoxia induces therapy resistance in castration-resistant prostate cancer. As a mitochondrial respiration inhibitor, metformin has the potential to improve tumor oxygenation. In this study, we evaluate the anti-tumor effect of ascorbic acid combined with metformin in prostate cancer. We demonstrated that ascorbic acid inhibits prostate cancer cells proliferation by generating ROS, and metformin enhances the anti-tumor effects of ascorbic acid. Mechanistically, metformin reduces oxygen consumption rate and NADP+/NADPH value in prostate cancer cells, thereby increases the ROS content induced by ascorbic acid. In addition, our data demonstrated that ascorbic acid inhibits p-AKT signaling in a ROS-dependent pathway, leading to inhibition of p-mTOR expression. And metformin inhibits the p-mTOR expression by activating the AMPK signaling pathway, exerting a synergistic effect on tumor suppression with ascorbic acid. Furthermore, metformin improves tumor oxygenation, and the combined treatment effect of ascorbic acid and metformin were demonstrated in a xenograft model of prostate cancer. Taken together, our data demonstrate that metformin enhances the anti-tumor proliferation effect of ascorbic acid by increasing ROS content in castration-resistant prostate cancer. This provides a new strategy for the clinical application of high-dose ascorbic acid as an anti-tumor drug. KEY MESSAGES: Ascorbic acid inhibits tumor growth by inducing ROS generation. As a mitochondrial respiration inhibitor, metformin inhibits cellular oxygen consumption rate to improve oxygenation of prostate cancer. Metformin enhances anti-tumor effect of ascorbic acid by increasing ROS content. Ascorbic acid inhibits the mTOR expression via PI3K-AKT pathway, and metformin inhibits the mTOR expression by inhibiting AMPK signaling in prostate cancer cells.


Assuntos
Antineoplásicos , Metformina , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/farmacologia , Apoptose , Ácido Ascórbico/farmacologia , Ácido Ascórbico/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Metformina/farmacologia , Fosfatidilinositol 3-Quinases , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Respiração , Serina-Treonina Quinases TOR/metabolismo , Animais
4.
Front Oncol ; 11: 660320, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307134

RESUMO

The effective and economical therapeutic strategy for metastatic castration-resistant prostate cancer (mCRPC) is still requested from patients, who are not available for Lu-177 or Ra-223 treatment. Drug repurposing as a cost-effective and time-saving alternative to traditional drug development has been increasingly discussed. Proton pump inhibitors (PPIs) such as pantroprazole, which are commonly used as antacids, have also been shown to be effective in cancer chemoprevention via induction of apoptosis in multiple cancer cell lines. Vitamin C is an essential micronutrient for human body, has been proposed as a potential anti-cancer agent. In this context, have we investigated the combination of vitamin C and pantoprazole for the management of metastatic castration-resistant prostate cancer (mCRPC). Six chosen human adenocarcinoma cell lines were used to investigate the influence of pantoprazole on the microenvironment of cancer cells (extracellular pH and production of exosomes). Tumor growth and tumor 18F-FDG uptake in PC3 xenografts were analyzed following varied treatment. Our in vitro Results have suggested that pantoprazole enhanced the cytotoxic activity of vitamin C by regulating pH values and production of exosomes in cancer cells. Moreover, the synergistic effect of pantoprazole and vitamin C was pH-dependent since pantoprazole was more effective at a slightly acidic pH. In vivo, the combined treatment using pantoprazole and vitamin C produced better therapeutic outcomes than treatment with vitamin C or pantoprazole alone, as demonstrated via tumor growth and uptake of 18F-FDG. Therefore, we suggest that pantoprazole combined with vitamin C could be as a possible strategy to manage mCRPC.

5.
Front Pharmacol ; 12: 671902, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054545

RESUMO

Purpose: Glutamine synthetase (GS) is the only currently known enzyme responsible for synthesizing endogenous glutamine (Gln). GS exerts a critical role in the oncogenesis of endogenous Gln-dependent cancers, making it an attractive target for anti-tumor therapies. A mixed-function oxidation system consisting of vitamin C (VC), oxygen, and trace metals can oxidize GS and promote its degradation. The current study aims to explore the effect of pharmacological VC treatment on GS. Methods: Endogenous Gln-dependent cancer lines (breast cancer MCF7 and prostate cancer PC3) were selected to establish chronic Gln-deprived MCF7 and PC3 cell models. The expression of GS in parental and chronic Gln-deprived tumor cells exposed to VC treatment and control was determined by Western blot analysis. The anti-cancer effects of VC on parental and chronic Gln-deprived tumor cells were assessed by CCK-8 and annexin V-FITC/PI FACS assays. In addition, changes in cellular reactive oxygen species (ROS), glutathione (GSH) levels and NADPH/NADP + ratio were analyzed to explore the underlying mechanisms. Moreover, BALB/c nude mice xenografting with parental and chronic Gln-deprived prostate cancer cells were constructed to evaluate the in vivo therapeutic effect of VC. Finally, tumor 13N-ammonia uptake in mice bearing prostate cancer xenografts was analyzed following treatment with VC and the expression of GS in xenografts were detected by immunohistochemistry. Results: Cells overexpressing GS were obtained by chronic Gln deprivation. We found that the cytotoxic effect of VC on cancer cells was positively correlated with the expression of GS. Additionally, VC treatment led to a significant increase in ROS production, as well as GSH depletion and NADPH/NADP + reduction. These changes could be reversed by the antioxidant N-acetyl-L-cysteine (NAC). Furthermore, pharmacological VC treatment exhibited a more significant therapeutic effect on xenografts of prostate cancer cells overexpressing GS, that could be well monitored by 13N-ammonia PET/CT imaging. Conclusion: Our findings indicate that VC can kill cancer cells by targeting glutamine synthetase to induce oxidative stress. VC could be used as an anti-cancer treatment for endogenous glutamine-dependent cancers.

6.
Transl Oncol ; 14(5): 101055, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33677235

RESUMO

L-ascorbic acid (AA) was reported to have an anti-cancer effect over 40 years. In recent years, several ongoing clinical trials are exploring the safety and efficacy of intravenous high-dose AA for cancer treatment. The lack of appropriate imaging modality limits the identification of potentially suitable patients for AA treatment. This study focuses on identifying AA-sensitive tumor cells using molecular imaging. 6-Deoxy-6-[18F] fluoro-L-ascorbic Acid (18F-DFA), a structural analog of AA, was synthesized and labeled to visualize the metabolism of AA in vivo. Colorectal cancer (CRC) cell lines with high and low expression of sodium-dependent vitamin C transporters 2 (SVCT2) were used for a series of cellular uptake tests. PET imaging was performed on xenograft tumor-bearing mice. More AA uptake was observed in CRC cells with high SVCT2 expression than in cells with low SVCT2 expression. The substrate (unlabeled AA) can competitively inhibit the 18F-DFA tracer uptake by CRC cells. The biodistribution of 18F-DFA in mice showed high radioactivity was seen in organs such as adrenal glands, kidneys, and liver that were known to have high concentrations of AA. Both PET imaging and tissue distribution showed that cancer cells with high SVCT2 expression enhanced the accumulation of 18F-DFA in mice after tumor formation. Immunohistochemistry was used to verify the corresponding results. As a radiotracer, 18F-DFA can provide powerful imaging information to identify tumor with high affinity of AA, and SVCT2 can be a potential biomarker in this process.

7.
Cell Oncol (Dordr) ; 43(1): 95-106, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31617161

RESUMO

PURPOSE: Traditional treatment regimens for advanced prostate cancer, especially castration-resistant prostate cancer, result in low survival times with severe side effects. Therefore, new treatment options are required. Vitamin C (VC) has been identified as a promising anti-cancer agent of which the effects depend on the accumulation of H2O2 that is produced through autoxidation. Sulfasalazine (SAS), a cystine transporter (Xc-) inhibitor, is known to suppress cellular glutathione (GSH) biosynthesis. Here, we hypothesized that targeting the Xc- transporter via SAS may improve the anti-cancer activity of VC through regulating GSH biosynthesis, which in turn may result in the accumulation of reactive oxygen species (ROS). METHODS: The anti-cancer effect of VC and/or SAS on prostate cancer cells was assessed using WST-8, colony formation and annexin V-FITC/PI FACS assays. Changes in cellular ROS and GSH levels were determined to verify our hypothesis. Finally, BALB/c nude mice bearing prostate cancer xenografts were used to assess the anti-cancer effects of single or combined VC and SAS therapies. RESULTS: We found that SAS could potentiate the short- and long-term cytotoxicity of VC in prostate cancer cells. We also found that the synergistic effect of SAS and VC led to significant cellular GSH depletion, resulting in increased ROS accumulation. This synergistic effect could be reversed by the antioxidant N-acetyl-L-cysteine (NAC). The synergistic effect of SAS and VC was also noted in prostate cancer xenografts and correlated with immunohistochemistry results. CONCLUSIONS: Our results strongly indicate that SAS, a relatively non-toxic drug that targets cystine transporters, in combination with VC may be superior to their single applications in the treatment of prostate cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ácido Ascórbico/uso terapêutico , Glutationa/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Sulfassalazina/uso terapêutico , Acetilcisteína/farmacologia , Sistema y+ de Transporte de Aminoácidos/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sulfassalazina/farmacologia , Transplante Heterólogo
8.
Int J Nanomedicine ; 12: 5941-5957, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28860759

RESUMO

Boron nitride (BN) nanomaterials have been increasingly explored for potential biological applications. However, their toxicity remains poorly understood. Using Caenorhabditis elegans as a whole-animal model for toxicity analysis of two representative types of BN nanomaterials - BN nanospheres (BNNSs) and highly water-soluble BN nanomaterial (named BN-800-2) - we found that BNNSs overall toxicity was less than soluble BN-800-2 with irregular shapes. The concentration thresholds for BNNSs and BN-800-2 were 100 µg·mL-1 and 10 µg·mL-1, respectively. Above this concentration, both delayed growth, decreased life span, reduced progeny, retarded locomotion behavior, and changed the expression of phenotype-related genes to various extents. BNNSs and BN-800-2 increased oxidative stress levels in C. elegans by promoting reactive oxygen species production. Our results further showed that oxidative stress response and MAPK signaling-related genes, such as GAS1, SOD2, SOD3, MEK1, and PMK1, might be key factors for reactive oxygen species production and toxic responses to BNNSs and BN-800-2 exposure. Together, our results suggest that when concentrations are lower than 10 µg·mL-1, BNNSs are more biocompatible than BN-800-2 and are potentially biocompatible material.


Assuntos
Compostos de Boro/toxicidade , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Nanoestruturas/toxicidade , Animais , Animais Geneticamente Modificados , Materiais Biocompatíveis , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Nanosferas/química , Nanosferas/toxicidade , Nanoestruturas/química , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Solubilidade , Testes de Toxicidade , Água/química
9.
Nat Protoc ; 12(10): 2081-2096, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28880279

RESUMO

Cell invasion through basement membrane (BM) barriers is crucial in development, leukocyte trafficking and the spread of cancer. The mechanisms that direct invasion, despite their importance in normal and disease states, are poorly understood, largely because of the inability to visualize dynamic cell-BM interactions in vivo. This protocol describes multichannel time-lapse confocal imaging of anchor-cell invasion in live Caenorhabditis elegans. Methods presented include outline-slide preparation and worm growth synchronization (15 min), mounting (20 min), image acquisition (20-180 min), image processing (20 min) and quantitative analysis (variable timing). The acquired images enable direct measurement of invasive dynamics including formation of invadopodia and cell-membrane protrusions, and removal of BM. This protocol can be combined with genetic analysis, molecular-activity probes and optogenetic approaches to uncover the molecular mechanisms underlying cell invasion. These methods can also be readily adapted by any worm laboratory for real-time analysis of cell migration, BM turnover and cell-membrane dynamics.


Assuntos
Membrana Basal/diagnóstico por imagem , Membrana Basal/metabolismo , Caenorhabditis elegans/citologia , Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Imagem com Lapso de Tempo/métodos , Animais , Membrana Celular/metabolismo
10.
Elife ; 52016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27661254

RESUMO

Epithelial cells and their underlying basement membranes (BMs) slide along each other to renew epithelia, shape organs, and enlarge BM openings. How BM sliding is controlled, however, is poorly understood. Using genetic and live cell imaging approaches during uterine-vulval attachment in C. elegans, we have discovered that the invasive uterine anchor cell activates Notch signaling in neighboring uterine cells at the boundary of the BM gap through which it invades to promote BM sliding. Through an RNAi screen, we found that Notch activation upregulates expression of ctg-1, which encodes a Sec14-GOLD protein, a member of the Sec14 phosphatidylinositol-transfer protein superfamily that is implicated in vesicle trafficking. Through photobleaching, targeted knockdown, and cell-specific rescue, our results suggest that CTG-1 restricts BM adhesion receptor DGN-1 (dystroglycan) trafficking to the cell-BM interface, which promotes BM sliding. Together, these studies reveal a new morphogenetic signaling pathway that controls BM sliding to remodel tissues.


Assuntos
Membrana Basal/metabolismo , Distroglicanas/metabolismo , Células Epiteliais/fisiologia , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Células Epiteliais/metabolismo , Movimento
11.
Biochem Biophys Res Commun ; 452(3): 328-33, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25148942

RESUMO

Cell invasion through basement membrane (BM) occurs in many physiological and pathological contexts. MIG-10, the Caenorhabditis elegans Lamellipodin (Lpd), regulates diverse biological processes. Its function and regulation in cell invasive behavior remain unclear. Using anchor cell (AC) invasion in C. elegans as an in vivo invasion model, we have previously found that mig-10's activity is largely outside of UNC-6 (netrin) signaling, a chemical cue directing AC invasion. We have shown that MIG-10 is a target of the transcription factor FOS-1A and facilitates BM breaching. Combining genetics and imaging analyses, we report that MIG-10 synergizes with UNC-6 to promote AC attachment to the BM, revealing a functional role for MIG-10 in stabilizing AC-BM adhesion. MIG-10 is also required for F-actin accumulation in the absence of UNC-6. Further, we identify mig-10 as a transcriptional target negatively regulated by EGL-43A (C. elegans Evi-1 proto-oncogene), a transcription factor positively controlled by FOS-1A. The revelation of this negative regulation unmasks an incoherent feedforward circuit existing among fos-1, egl-43 and mig-10. Moreover, our study suggests the functional importance of the negative regulation on mig-10 expression by showing that excessive MIG-10 impairs AC invasion. Thus, we provide new insight into MIG-10's function and its complex transcriptional regulation during cell invasive behavior.


Assuntos
Membrana Basal/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Gônadas/metabolismo , Fatores de Transcrição/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Adesão Celular , Movimento Celular , Transtornos do Desenvolvimento Sexual/genética , Transtornos do Desenvolvimento Sexual/metabolismo , Regulação da Expressão Gênica , Gônadas/citologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Netrinas , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Transcrição Gênica
12.
Nanotechnology ; 20(10): 105605, 2009 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-19417525

RESUMO

Spherical gold nanoparticles with diameters less than 8 nm have been prepared by the photoinduced reduction of hydrogen tetrachloroaurate via a one-step sol-gel process. The as-prepared Au nanoparticles are highly dispersed in a mesoporous TiO2 gel monolith and are exposed to the external ambient atmosphere with a surface plasmon resonance absorption band centered at 578 nm. The results show that the size, size distribution, and dispersion of Au nanoparticles in the titania monolith are strongly dependent on the ultraviolet irradiation time of AuCl(4)(-) ions in the titania sol. The Au nanoparticles are found to be more uniform and smaller in size and more highly dispersed in the titania monolith with longer irradiation time. The crystallization of titania from the amorphous phase to the anatase phase is found to be suppressed at room temperature, and this is attributed to the smaller and highly dispersed Au nanoparticles on the surface of the colloids of titania.


Assuntos
Cristalização/métodos , Ouro/química , Nanosferas/química , Nanosferas/ultraestrutura , Nanotecnologia/métodos , Fotoquímica/métodos , Titânio/química , Géis/química , Géis/efeitos da radiação , Luz , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanosferas/efeitos da radiação , Tamanho da Partícula , Propriedades de Superfície , Titânio/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA