Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38730868

RESUMO

A sub-eutectic high-entropy alloy composed of CoCrFeNiNb0.25 was prepared using a combination of mechanical powder mixing and selective laser melting (SLM). The mechanical properties of the alloy were enhanced by employing an interlayer laser remelting process. This study demonstrates the feasibility of using mechanical mixing and SLM to form an CoCrFeNiNb0.25 alloy. The interlayer laser remelting process can effectively promote the melting of Nb particles introduced by mechanical mixing, release the stresses near the unfused Nb particles, and reduce their degradation of the specimen properties. The results indicate that the CoCrFeNiNb0.25 alloy, prepared using the interlayer laser remelting process, had an average microhardness of 376 HV, a tensile strength of 974 MPa, and an elongation at break of 10.51%. This process offers a viable approach for rapidly adjusting the composition of high-entropy alloys for SLM forming.

3.
Materials (Basel) ; 16(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36984041

RESUMO

The application of Nb microalloying to high-carbon pearlite bridge cable wire rod steel has always been controversial, especially in the actual production process, which will be affected by the cooling rate, holding temperature and final bonding temperature. In this paper, the experimental characterization, finite element simulation and phase diagram calculation of the test steel were carried out, then the microstructure and properties of different parts of Nb microalloying of bridge cable wire rods were compared and analyzed. The phase transition interval of pearlite during the water-cooling process of bridge cable wire rods is increased due to the refinement of austenite grains, and the significant increase in the end temperature of the phase transition makes the average interlamellar spacing of pearlite increase. The cooling rate of different parts of bridge cable wire rods simulated by Abaqus has little difference. At the same time, Nb microalloying effectively increases the proportion of low-angle grain boundaries, so that the overall average misorientation representing the surface defects is reduced. This helps to reduce the surface energy and increase the stability of the microstructure. Combined with the mechanical properties of microtensile rods, it is found that the grain refinement effect of Nb is greater than that of coarsening interlamellar spacing during hot rolling deformation in actual production, which makes the tensile strength at the 1/4 section increase significantly. The overall tensile strength and area shrinkage of the steel wire have also been effectively improved.

4.
Phytomedicine ; 99: 154027, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35278898

RESUMO

BACKGROUND: Doxorubicin (DOX) is a highly effective broad-spectrum antitumor agent, but its clinical administration is limited by self-induced cardiotoxicity. Dihydromyricetin (DHM) is a flavonoid compound extracted from the Japanese raisin tree. Evidence that DHM has neovascular protective properties makes it a candidate for studying cardiotoxicity prevention strategy. However, it remains unknown if DHM can protect against cardiotoxicity caused by DOX. PURPOSE: The present study was performed to evaluate the protective effect of DHM on DOX-induced cardiotoxicity in vivo and in vitro. METHODS: C57BL/6 mice were intraperitoneally injected with DOX to construct cardiac injury model in vivo, and AC16 cells were exposed to DOX to induce cell injury in vitro. Left ventricular function of mice were detected by echocardiography, the apoptosis of mice cardiac tissue and AC16 cells were detected by TUNEL and Hoechst33342/PI double staining. The expression of apoptosis and autophagy related proteins were detected by western blotting, immunohistochemical staining and immunofluorescence staining. RESULTS: Echocardiographic results showed that DOX-induced cardiotoxicity were significantly alleviated by DHM pretreatment. DOX induced cardiotoxicity of mice by inhibiting AMPK activation, increasing apoptosis and decreasing autophagy. However, under the same conditions, the heart tissue of DHM-pretreated mice showed increased autophagy and decreased apoptosis via activation AMPK/mTOR pathway. The same results were observed in vitro, and it was also found that DHM can inhibit the production of intracellular ROS in vitro. CONCLUSION: DHM protects against cardiotoxicity by inhibiting apoptosis and oxidative stress and it can allevate theautophagy inhibition caused by DOX through AMPK/mTOR pathway. DHM preconditioning may be a breakthrough in protecting DOX-induced cardiotoxicity in the future clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA