Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Transl Med ; 22(1): 815, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223631

RESUMO

Congenital myopathies (CMs) are a kind of non-progressive or slow-progressive muscle diseases caused by genetic mutations, which are currently defined and categorized mainly according to their clinicopathological features. CMs exhibit pleiotropy and genetic heterogeneity. Currently, supportive treatment and pharmacological remission are the mainstay of treatment, with no cure available. Some adeno-associated viruses show promising prospects in the treatment of MTM1 and BIN1-associated myopathies; however, such gene-level therapeutic interventions target only specific mutation types and are not generalizable. Thus, it is particularly crucial to identify the specific causative genes. Here, we outline the pathogenic mechanisms based on the classification of causative genes: excitation-contraction coupling and triadic assembly (RYR1, MTM1, DNM2, BIN1), actin-myosin interaction and production of myofibril forces (NEB, ACTA1, TNNT1, TPM2, TPM3), as well as other biological processes. Furthermore, we provide a comprehensive overview of recent therapeutic advancements and potential treatment modalities of CMs. Despite ongoing research endeavors, targeted strategies and collaboration are imperative to address diagnostic uncertainties and explore potential treatments.


Assuntos
Doenças Musculares , Humanos , Animais , Doenças Musculares/terapia , Doenças Musculares/fisiopatologia , Doenças Musculares/congênito , Terapia Genética , Miopatias Congênitas Estruturais/terapia , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/fisiopatologia , Mutação/genética
2.
Biochem Pharmacol ; 229: 116532, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270943

RESUMO

The pathogenesis of myocardial hypertrophy remains incompletely understood, highlighting the critical need for in-depth investigation into its pathogenesis and pathophysiology to develop innovative strategies for preventing and treating heart diseases. In this study, a model of angiotensin II (Ang II)-induced myocardial hypertrophy was established using subcutaneous administration with a micropump. Echocardiography, wheat germ agglutinin staining, and western blot analysis were used to evaluate the myocardial hypertrophy model after 5, 10, and 15 days of Ang II treatment. RNA-seq was employed to analyze the differential expression profile of mRNA, followed by bioinformatics analysis. Subsequently, the anti-inflammatory drug meloxicam was utilized to explore its impact on cardiac hypertrophy in mice. The findings demonstrated that mice developed myocardial hypertrophy following subcutaneous administration of Ang II. Transcriptomic analysis revealed significant changes in gene expression in the myocardium induced by Ang II, with the most pronounced differences observed at day 10. Functional analysis and verification of differentially expressed genes indicated that Ang II triggered an inflammatory response in the myocardium, leading to up-regulation of genes associated with fibrosis and apoptosis while decreasing energy metabolism; alterations were also observed in genes related to oxidative stress and calcium ion binding. Treatment with meloxicam improved Ang II-induced myocardial hypertrophy. This study not only elucidated the molecular regulatory mechanism underlying mouse myocardial hypertrophy at a transcriptional level but also provided new insights into clinical prevention and treatment strategies for cardiac diseases such as dilated cardiomyopathy and heart failure.

4.
Mol Neurobiol ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073530

RESUMO

Hypoxic-ischemic encephalopathy (HIE) is a brain lesion caused by inadequate blood supply and oxygen deprivation, often occurring in neonates. It has emerged as a grave complication of neonatal asphyxia, leading to chronic neurological damage. Nevertheless, the precise pathophysiological mechanisms underlying HIE are not entirely understood. This paper aims to comprehensively elucidate the contributions of hypoxia-ischemia, reperfusion injury, inflammation, oxidative stress, mitochondrial dysfunction, excitotoxicity, ferroptosis, endoplasmic reticulum stress, and apoptosis to the onset and progression of HIE. Currently, hypothermia therapy stands as the sole standard treatment for neonatal HIE, albeit providing only partial neuroprotection. Drug therapy and stem cell therapy have been explored in the treatment of HIE, exhibiting certain neuroprotective effects. Employing drug therapy or stem cell therapy as adjunctive treatments to hypothermia therapy holds great significance. This article presents a systematic review of the pathogenesis and treatment strategies of HIE, with the goal of enhancing the effect of treatment and improving the quality of life for HIE patients.

5.
Clin Transl Oncol ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831193

RESUMO

BACKGROUND: This study aimed to investigate the serum metabolite profiles during neoadjuvant chemoradiotherapy (NCRT) in locally advanced rectal cancer (LARC) using liquid chromatography-mass spectrometry (LC-MS) metabolomics analysis. METHODS: 60 serum samples were collected from 20 patients with LARC before, during, and after radiotherapy. LC-MS metabolomics analysis was performed to identify the metabolite variations. Functional annotation was applied to discover altered metabolic pathways. The key metabolites were screened and their ability to predict sensitivity to radiotherapy was calculated using random forests and ROC curves. RESULTS: The results showed that NCRT led to significant changes in the serum metabolite profiles. The serum metabolic profiles showed an apparent separation between different time points and different sensitivity groups. Moreover, the functional annotation showed that the differential metabolites were associated with a series of important metabolic pathways. Pre-radiotherapy (3Z,6Z)-3,6-Nonadiena and pro-radiotherapy 1-Hydroxyibuprofen showed good predictive performance in discriminating the sensitive and non-sensitive group to NCRT, with an AUC of 0.812 and 0.75, respectively. Importantly, the combination of different metabolites significantly increased the predictive ability. CONCLUSION: This study demonstrated the potential of LC-MS metabolomics for revealing the serum metabolite profiles during NCRT in LARC. The identified metabolites may serve as potential biomarkers and therapeutic targets for the management of this disease. Furthermore, the understanding of the affected metabolic pathways may help design more personalized therapeutic strategies for LARC patients.

6.
Mol Nutr Food Res ; 68(10): e2300347, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712453

RESUMO

Skeletal muscle can undergo detrimental changes in various diseases, leading to muscle dysfunction and atrophy, thus severely affecting people's lives. Along with exercise, there is a growing interest in the potential of nutritional support against muscle atrophy. This review provides a brief overview of the molecular mechanisms driving skeletal muscle atrophy and summarizes recent advances in nutritional interventions for preventing and treating muscle atrophy. The nutritional supplements include amino acids and their derivatives (such as leucine, ß-hydroxy, ß-methylbutyrate, and creatine), various antioxidant supplements (like Coenzyme Q10 and mitoquinone, resveratrol, curcumin, quercetin, Omega 3 fatty acids), minerals (such as magnesium and selenium), and vitamins (such as vitamin B, vitamin C, vitamin D, and vitamin E), as well as probiotics and prebiotics (like Lactobacillus, Bifidobacterium, and 1-kestose). Furthermore, the study discusses the impact of a combined approach involving nutritional support and physical therapy to prevent muscle atrophy, suggests appropriate multi-nutritional and multi-modal interventions based on individual conditions to optimize treatment outcomes, and enhances the recovery of muscle function for patients. By understanding the molecular mechanisms behind skeletal muscle atrophy and implementing appropriate interventions, it is possible to enhance the recovery of muscle function and improve patients' quality of life.


Assuntos
Suplementos Nutricionais , Músculo Esquelético , Atrofia Muscular , Humanos , Atrofia Muscular/prevenção & controle , Atrofia Muscular/dietoterapia , Músculo Esquelético/efeitos dos fármacos , Probióticos/administração & dosagem , Antioxidantes , Prebióticos , Vitaminas , Animais
7.
Inflammopharmacology ; 32(2): 1633-1646, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38451396

RESUMO

Improving inflammation may serve as useful therapeutic interventions for the hindlimb unloading-induced disuse muscle atrophy. Celecoxib is a selective non-steroidal anti-inflammatory drug. We aimed to determine the role and mechanism of celecoxib in hindlimb unloading-induced disuse muscle atrophy. Celecoxib significantly attenuated the decrease in soleus muscle mass, hindlimb muscle function and the shift from slow- to fast-twitch muscle fibers caused by hindlimb unloading in rats. Importantly, celecoxib inhibited the increased expression of inflammatory factors, macrophage infiltration in damaged soleus muscle. Mechanistically, Celecoxib could significantly reduce oxidative stress and endoplasmic reticulum stress in soleus muscle of unloaded rats. Furthermore, celecoxib inhibited muscle proteolysis by reducing the levels of MAFbx, MuRF1, and autophagy related proteins maybe by inhibiting the activation of pro-inflammatory STAT3 pathway in vivo and in vitro. This study is the first to demonstrate that celecoxib can attenuate disuse muscle atrophy caused by hindlimb unloading via suppressing inflammation, oxidative stress and endoplasmic reticulum stress probably, improving target muscle function and reversing the shift of muscle fiber types by inhibiting STAT3 pathways-mediated inflammatory cascade. This study not only enriches the potential molecular regulatory mechanisms, but also provides new potential therapeutic targets for disuse muscle atrophy.


Assuntos
Elevação dos Membros Posteriores , Atrofia Muscular , Animais , Ratos , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Elevação dos Membros Posteriores/efeitos adversos , Elevação dos Membros Posteriores/fisiologia , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Estresse Oxidativo
8.
Front Pharmacol ; 15: 1344276, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313305

RESUMO

Aim: Diabetic sarcopenia leads to disability and seriously affects the quality of life. Currently, there are no effective therapeutic strategies for diabetic sarcopenia. Our previous studies have shown that inflammation plays a critical role in skeletal muscle atrophy. Interestingly, the connection between chronic inflammation and diabetic complications has been revealed. However, the effects of non-steroidal anti-inflammatory drug celecoxib on diabetic sarcopenia remains unclear. Materials and Methods: The streptozotocin (streptozotocin)-induced diabetic sarcopenia model was established. Rotarod test and grip strength test were used to assess skeletal muscle function. Hematoxylin and eosin and immunofluorescence staining were performed to evaluate inflammatory infiltration and the morphology of motor endplates in skeletal muscles. Succinate dehydrogenase (SDH) staining was used to determine the number of succinate dehydrogenase-positive muscle fibers. Dihydroethidium staining was performed to assess the levels of reactive oxygen species (ROS). Western blot was used to measure the levels of proteins involved in inflammation, oxidative stress, endoplasmic reticulum stress, ubiquitination, and autophagic-lysosomal pathway. Transmission electron microscopy was used to evaluate mitophagy. Results: Celecoxib significantly ameliorated skeletal muscle atrophy, improving skeletal muscle function and preserving motor endplates in diabetic mice. Celecoxib also decreased infiltration of inflammatory cell, reduced the levels of IL-6 and TNF-α, and suppressed the activation of NF-κB, Stat3, and NLRP3 inflammasome pathways in diabetic skeletal muscles. Celecoxib decreased reactive oxygen species levels, downregulated the levels of Nox2 and Nox4, upregulated the levels of GPX1 and Nrf2, and further suppressed endoplasmic reticulum stress by inhibiting the activation of the Perk-EIF-2α-ATF4-Chop in diabetic skeletal muscles. Celecoxib also inhibited the levels of Foxo3a, Fbx32 and MuRF1 in the ubiquitin-proteasome system, as well as the levels of BNIP3, Beclin1, ATG7, and LC3Ⅱ in the autophagic-lysosomal system, and celecoxib protected mitochondria and promoted mitochondrial biogenesis by elevating the levels of SIRT1 and PGC1-α, increased the number of SDH-positive fibers in diabetic skeletal muscles. Conclusion: Celecoxib improved diabetic sarcopenia by inhibiting inflammation, oxidative stress, endoplasmic reticulum stress, and protecting mitochondria, and subsequently suppressing proteolytic systems. Our study provides evidences for the molecular mechanism and treatment of diabetic sarcopenia, and broaden the way for the new use of celecoxib in diabetic sarcopenia.

9.
Cell Mol Life Sci ; 81(1): 67, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289345

RESUMO

Skeletal muscle is a highly specialized tissue composed of myofibres that performs crucial functions in movement and metabolism. In response to external stimuli and injuries, a range of stem/progenitor cells, with muscle stem cells or satellite cells (MuSCs) being the predominant cell type, are rapidly activated to repair and regenerate skeletal muscle within weeks. Under normal conditions, MuSCs remain in a quiescent state, but become proliferative and differentiate into new myofibres in response to injury. In addition to MuSCs, some interstitial progenitor cells (IPCs) such as fibro-adipogenic progenitors (FAPs), pericytes, interstitial stem cells expressing PW1 and negative for Pax7 (PICs), muscle side population cells (SPCs), CD133-positive cells and Twist2-positive cells have been identified as playing direct or indirect roles in regenerating muscle tissue. Here, we highlight the heterogeneity, molecular markers, and functional properties of these interstitial progenitor cells, and explore the role of muscle stem/progenitor cells in skeletal muscle homeostasis, aging, and muscle-related diseases. This review provides critical insights for future stem cell therapies aimed at treating muscle-related diseases.


Assuntos
Músculo Esquelético , Células-Tronco , Homeostase , Adipogenia
10.
Mol Neurobiol ; 61(7): 4473-4487, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38102515

RESUMO

Amyotrophic lateral sclerosis (ALS) is a common neurodegenerative disease, accompanied by the gradual loss of motor neuron, even life-threatening. However, the pathogenesis, early diagnosis, and effective strategies of ALS are not yet completely understood. In this study, the function of differentially expressed genes (DEGs) in non-neuronal cells of the primary motor cortex of ALS patients (DATA1), the brainstem of SOD1 mutant ALS mice (DATA2), and the whole blood tissue of ALS patients (DATA3) were explored. The results showed that the functions of DEGs in non-neuronal cells were mainly related to energy metabolism (such as oxidative phosphorylation) and protein synthesis. In non-neuronal cells, six upregulated DEGs (HSPA8, SOD1, CALM1, CALM2, NEFL, COX6C) and three downregulated DEGs (SNRNP70, HSPA1A, HSPA1B) might be key factors in regulating ALS. Microglia played a key role in the development of ALS. The expression of SOD1 and TUBA4A in microglia in DATA1 was significantly increased. The integration analysis of DEGs in DATA1 and DATA2 showed that SOD1 and CALM1 might be potential biomarkers. The integration analysis of DEGs in DATA1 and DATA3 showed that CALM2 and HSPA1A might be potential biomarkers. Cell interaction showed that the interaction between microglia and other cells was reduced in high oxidative phosphorylation states, which might be a risk factor in ALS. Our research provided evidence for the pathogenesis, early diagnosis, and potential targeted therapy for ALS.


Assuntos
Esclerose Lateral Amiotrófica , Biomarcadores , Metabolismo Energético , Microglia , Análise de Célula Única , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Microglia/metabolismo , Microglia/patologia , Animais , Metabolismo Energético/genética , Humanos , Biomarcadores/metabolismo , Análise de Sequência de RNA/métodos , Camundongos , Camundongos Transgênicos , Masculino , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Feminino
11.
Mol Biol Rep ; 51(1): 9, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085347

RESUMO

BACKGROUND: Complex pathophysiological changes accompany denervation-induced skeletal muscle atrophy, but no effective treatment strategies exist. Our previous study indicated that extracellular vesicles derived from skin-derived precursors-derived Schwann cells (SKP-SC-EVs) can effectively mitigate denervation-induced muscle atrophy. However, the specific molecular mechanism remains unclear. METHODS AND RESULTS: In this study, we used bioinformatics methods to scrutinize the impact of SKP-SC-EVs on gene expression in denervation-induced skeletal muscle atrophy. We found that SKP-SC-EVs altered the expression of 358 genes in denervated skeletal muscles. The differentially expressed genes were predominantly participated in biological processes, including cell cycle, inflammation, immunity, and adhesion, and signaling pathways, such as FoxO and PI3K.Using the Molecular Complex Detection (MCODE) plugin, we identified the two clusters with the highest score: cluster 1 comprised 37 genes, and Cluster 2 consisted of 24 genes. Then, fifty hub genes were identified using CytoHubba. The intersection of Hub genes and genes obtained by MCODE showed that all 23 genes related to the cell cycle in Cluster 1 were hub genes, and 5 genes in Cluster 2 were hub genes and associated with inflammation. CONCLUSIONS: Overall, the differentially expressed genes in denervated skeletal muscle following SKP-SC-EVs treatment are primarily linked to the cell cycle and inflammation. Consequently, promoting proliferation and inhibiting inflammation may be the critical process in which SKP-SC-EVs delay denervation-induced muscle atrophy. Our findings contribute to a better understanding of the molecular mechanism of SKP-SC-EVs delaying denervation-induced muscle atrophy, offering a promising new avenue for muscle atrophy treatment.


Assuntos
Atrofia Muscular , Transcriptoma , Humanos , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Denervação , Inflamação/metabolismo
12.
J Transl Med ; 21(1): 845, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996930

RESUMO

BACKGROUND: Denervation-induced muscle atrophy is complex disease involving multiple biological processes with unknown mechanisms. N6-methyladenosine (m6A) participates in skeletal muscle physiology by regulating multiple levels of RNA metabolism, but its impact on denervation-induced muscle atrophy is still unclear. Here, we aimed to explore the changes, functions, and molecular mechanisms of m6A RNA methylation during denervation-induced muscle atrophy. METHODS: During denervation-induced muscle atrophy, the m6A immunoprecipitation sequencing (MeRIP-seq) as well as enzyme-linked immunosorbent assay analysis were used to detect the changes of m6A modified RNAs and the involved biological processes. 3-deazidenosine (Daa) and R-2-hydroxyglutarate (R-2HG) were used to verify the roles of m6A RNA methylation. Through bioinformatics analysis combined with experimental verification, the regulatory roles and mechanisms of m6A RNA methylation had been explored. RESULTS: There were many m6A modified RNAs with differences during denervation-induced muscle atrophy, and overall, they were mainly downregulated. After 72 h of denervation, the biological processes involved in the altered mRNA with m6A modification were mainly related to zinc ion binding, ubiquitin protein ligase activity, ATP binding and sequence-specific DNA binding and transcription coactivator activity. Daa reduced overall m6A levels in healthy skeletal muscles, which reduced skeletal muscle mass. On the contrary, the increase in m6A levels mediated by R-2HG alleviated denervation induced muscle atrophy. The m6A RNA methylation regulated skeletal muscle mass through ubiquitin-proteasome pathway. CONCLUSION: This study indicated that decrease in m6A RNA methylation was a new symptom of denervation-induced muscle atrophy, and confirmed that targeting m6A alleviated denervation-induced muscle atrophy.


Assuntos
Atrofia Muscular , Complexo de Endopeptidases do Proteassoma , Humanos , Metilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , RNA/metabolismo , Denervação , Ubiquitinas/metabolismo
13.
Biochem Pharmacol ; 218: 115872, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37865142

RESUMO

Myasthenia gravis (MG) is a type of autoimmune disease caused by the blockage of neuromuscular junction transmission owing to the attack of autoantibodies on transmission-related proteins. Related antibodies, such as anti-AChR, anti-MuSK and anti-LRP4 antibodies, can be detected in most patients with MG. Although traditional therapies can control most symptoms, several challenges remain to be addressed, necessitating the development of more effective and safe treatment strategies for MG. With the in-depth exploration on the mechanism and immune targets of MG, effective therapies, especially therapies using biologicals, have been reported recently. Given the important roles of immune cells, cytokines and intercellular interactions in the pathological process of MG, B-cell targeted therapy, T-cell targeted therapy, proteasome inhibitors targeting plasma cell, complement inhibitors, FcRn inhibitors have been developed for the treatment of MG. Although these novel therapies exert good therapeutic effects, they may weaken the immunity and increase the risk of infection in MG patients. This review elaborates on the pathogenesis of MG and discusses the advantages and disadvantages of the strategies of traditional treatment and biologicals. In addition, this review emphasises that combined therapy may have better therapeutic effects and reducing the risk of side effects of treatments, which has great prospects for the treatment of MG. With the deepening of research on immunotherapy targets in MG, novel opportunities and challenges in the treatment of MG will be introduced.


Assuntos
Miastenia Gravis , Receptores Proteína Tirosina Quinases , Humanos , Receptores Proteína Tirosina Quinases/metabolismo , Miastenia Gravis/tratamento farmacológico , Miastenia Gravis/diagnóstico , Junção Neuromuscular/metabolismo , Autoanticorpos/metabolismo , Imunoterapia
14.
J Transl Med ; 21(1): 503, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495991

RESUMO

Mitochondria play important roles in maintaining cellular homeostasis and skeletal muscle health, and damage to mitochondria can lead to a series of pathophysiological changes. Mitochondrial dysfunction can lead to skeletal muscle atrophy, and its molecular mechanism leading to skeletal muscle atrophy is complex. Understanding the pathogenesis of mitochondrial dysfunction is useful for the prevention and treatment of skeletal muscle atrophy, and finding drugs and methods to target and modulate mitochondrial function are urgent tasks in the prevention and treatment of skeletal muscle atrophy. In this review, we first discussed the roles of normal mitochondria in skeletal muscle. Importantly, we described the effect of mitochondrial dysfunction on skeletal muscle atrophy and the molecular mechanisms involved. Furthermore, the regulatory roles of different signaling pathways (AMPK-SIRT1-PGC-1α, IGF-1-PI3K-Akt-mTOR, FoxOs, JAK-STAT3, TGF-ß-Smad2/3 and NF-κB pathways, etc.) and the roles of mitochondrial factors were investigated in mitochondrial dysfunction. Next, we analyzed the manifestations of mitochondrial dysfunction in muscle atrophy caused by different diseases. Finally, we summarized the preventive and therapeutic effects of targeted regulation of mitochondrial function on skeletal muscle atrophy, including drug therapy, exercise and diet, gene therapy, stem cell therapy and physical therapy. This review is of great significance for the holistic understanding of the important role of mitochondria in skeletal muscle, which is helpful for researchers to further understanding the molecular regulatory mechanism of skeletal muscle atrophy, and has an important inspiring role for the development of therapeutic strategies for muscle atrophy targeting mitochondria in the future.


Assuntos
Atrofia Muscular , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Músculo Esquelético/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
15.
Biochem Pharmacol ; 214: 115664, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37331636

RESUMO

Oxidative stress, inflammation, mitochondrial dysfunction, reduced protein synthesis, and increased proteolysis are all critical factors in the process of muscle atrophy. In particular, oxidative stress is the key factor that triggers skeletal muscle atrophy. It is activated in the early stages of muscle atrophy and can be regulated by various factors. The mechanisms of oxidative stress in the development of muscle atrophy have not been completely elucidated. This review provides an overview of the sources of oxidative stress in skeletal muscle and the correlation of oxidative stress with inflammation, mitochondrial dysfunction, autophagy, protein synthesis, proteolysis, and muscle regeneration in muscle atrophy. Additionally, the role of oxidative stress in skeletal muscle atrophy caused by several pathological conditions, including denervation, unloading, chronic inflammatory diseases (diabetes mellitus, chronic kidney disease, chronic heart failure, and chronic obstructive pulmonary disease), sarcopenia, hereditary neuromuscular diseases (spinal muscular atrophy, amyotrophic lateral sclerosis, and Duchenne muscular dystrophy), and cancer cachexia, have been discussed. Finally, this review proposes the alleviation oxidative stress using antioxidants, Chinese herbal extracts, stem cell and extracellular vesicles as a promising therapeutic strategy for muscle atrophy. This review will aid in the development of novel therapeutic strategies and drugs for muscle atrophy.


Assuntos
Atrofia Muscular , Sarcopenia , Humanos , Atrofia Muscular/metabolismo , Estresse Oxidativo , Músculo Esquelético/metabolismo , Sarcopenia/tratamento farmacológico , Sarcopenia/metabolismo , Sarcopenia/patologia , Antioxidantes/metabolismo , Doença Crônica
16.
J Neurol ; 270(8): 3733-3749, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37258941

RESUMO

Duchenne muscular dystrophy (DMD) is a severe, progressive, muscle-wasting disease, characterized by progressive deterioration of skeletal muscle that causes rapid loss of mobility. The failure in respiratory and cardiac muscles is the underlying cause of premature death in most patients with DMD. Mutations in the gene encoding dystrophin result in dystrophin deficiency, which is the underlying pathogenesis of DMD. Dystrophin-deficient myocytes are dysfunctional and vulnerable to injury, triggering a series of subsequent pathological changes. In this review, we detail the molecular mechanism of DMD, dystrophin deficiency-induced muscle cell damage (oxidative stress injury, dysregulated calcium homeostasis, and sarcolemma instability) and other cell damage and dysfunction (neuromuscular junction impairment and abnormal differentiation of muscle satellite). We also describe aberrant function of other cells and impaired muscle regeneration due to deterioration of the muscle microenvironment, and dystrophin deficiency-induced multiple organ dysfunction, while summarizing the recent advances in the treatment of DMD.


Assuntos
Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofina/genética , Músculo Esquelético , Mutação , Junção Neuromuscular/patologia
17.
Commun Biol ; 6(1): 252, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894627

RESUMO

The underlying etiologies of seizures are highly heterogeneous and remain incompletely understood. While studying the unfolded protein response (UPR) pathways in the brain, we unexpectedly discovered that transgenic mice (XBP1s-TG) expressing spliced X-box-binding protein-1 (Xbp1s), a key effector of UPR signaling, in forebrain excitatory neurons, rapidly develop neurologic deficits, most notably recurrent spontaneous seizures. This seizure phenotype begins around 8 days after Xbp1s transgene expression is induced in XBP1s-TG mice, and by approximately 14 days post induction, the seizures evolve into status epilepticus with nearly continuous seizure activity followed by sudden death. Animal death is likely due to severe seizures because the anticonvulsant valproic acid could significantly prolong the lives of XBP1s-TG mice. Mechanistically, our gene profiling analysis indicates that compared to control mice, XBP1s-TG mice exhibit 591 differentially regulated genes (mostly upregulated) in the brain, including several GABAA receptor genes that are notably downregulated. Finally, whole-cell patch clamp analysis reveals a significant reduction in both spontaneous and tonic GABAergic inhibitory responses in Xbp1s-expressing neurons. Taken together, our findings unravel a link between XBP1s signaling and seizure occurrence.


Assuntos
Convulsões , Resposta a Proteínas não Dobradas , Animais , Camundongos , Morte Súbita , Camundongos Transgênicos , Neurônios , Convulsões/genética
18.
Ann Transl Med ; 11(2): 129, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36819494

RESUMO

Background and Objective: In traditional Chinese medicine (TCM), natural drugs and their bioactive components have been widely used to treat epilepsy. Epilepsy is a chronic disease caused by abnormal discharge of brain neurons that leads to brain dysfunction and cognitive impairment. Several factors are involved in the mechanisms of epilepsy, and the current treatments do not seem promising. The potential efficacy of natural drugs with lower toxicity and less side effects have attracted increasing attention. Methods: We used the terms, "TCM", "traditional Chinese medicine", "herbal", "epilepsy", "seizure", and the name of each prescription and bioactive components in the review to collect papers about application of TCM in epilepsy treatment from PubMed online database and Chinese database including Chinese National Knowledge Infrastructure (CNKI), Wanfang, and Weipu. Key Content and Findings: We summarized some common TCM prescriptions and related active components used for the treatment of epilepsy. Six prescriptions (Chaihu Shugan decoction, Tianma Gouteng decoction, Kangxian capsules, Taohong Siwu decoction, Liujunzi decoction, Compound Danshen dropping pills) and nine main bioactive compounds (Saikosaponin A, Rhynchophylline, Tetramethylpyrazine, Gastrodin, Baicalin and baicalein, α-Asarone, Ginsenoside, Tanshinone, Paeoniflorin) were reviewed to provide a scientific basis for the development of potential antiepileptic drugs (AEDs). Conclusions: The pharmacological effects and molecular mechanisms of TCM in the treatment of epilepsy are complex, targeting several pathological aspects of epilepsy. However, the limitations of TCM, such as the lack of standardized treatments, have prevented its clinical application in epilepsy treatment. Thus, additional clinical trials are required to further evaluate the effectiveness and safety of TCM prescriptions and their bioactive components in the future.

19.
Int Immunopharmacol ; 116: 109802, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36738682

RESUMO

Inflammation is considered to be involved in epileptogenesis. However, the relationship between fever and inflammation as well as the mechanisms of fever in the occurrence and development of childhood epilepsy need further investigation. Here, we described an in vivo model of hyperthermia-induced seizures in zebrafish larvae with pentylenetetrazole (PTZ) exposure. Hyperthermia increased the susceptibility to seizure and the production of pro-inflammatory factors in PTZ-induced zebrafish larvae. As mutations in GABRG2 have been associated with fever-associated epilepsy, we used a Tg(hGABRG2F343L) zebrafish model expressing mutant human GABRG2(F343L) to further investigate the involvement of inflammation in fever-induced seizures. Our data indicated that hyperthermia also increased the locomotor activity in Tg(hGABRG2F343L) zebrafish larvae. Although the production of pro-inflammatory factors was upregulated by GABRG2 mutation, hyperthermia did not change the production of pro-inflammatory factors significantly. Lipopolysaccharide (LPS) stimulation was sufficient to increase the locomotor activity in zebrafish larvae, suggesting that inflammation contributed to fever-associated epilepsy. The expression of GABRG2 was increased with PTZ induction, especially at a higher temperature. Moreover, inhibition of inflammation by dexamethasone (DEX) reduced the excitability of zebrafish larvae, especially at a higher temperature. Finally, in vitro experiments proved that LPS stimulation increased the production of IL-1ß and IL-6 in GABRG2(F343L) transfected cells. Collectively, our study demonstrated that neuroinflammation was induced in febrile seizures, and the increased expression of IL-1ß and IL-6 might be responsible for epileptogenesis. The vicious cycle between fever and inflammation might induce seizure onset, and anti-inflammatory strategies might be a potential treatment for fever-associated epilepsy.


Assuntos
Epilepsia , Convulsões Febris , Animais , Humanos , Modelos Animais de Doenças , Epilepsia/genética , Epilepsia/induzido quimicamente , Febre , Inflamação , Interleucina-6/genética , Larva , Lipopolissacarídeos/efeitos adversos , Pentilenotetrazol , Peixe-Zebra , Interleucina-1beta
20.
Biochem Pharmacol ; 208: 115407, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36596414

RESUMO

Chronic kidney disease (CKD) is a high-risk chronic catabolic disease due to its high morbidity and mortality. CKD is accompanied by many complications, leading to a poor quality of life, and serious complications may even threaten the life of CKD patients. Muscle atrophy is a common complication of CKD. Muscle atrophy and sarcopenia in CKD patients have complex pathways that are related to multiple mechanisms and related factors. This review not only discusses the mechanisms by which inflammation, oxidative stress, mitochondrial dysfunction promote CKD-induced muscle atrophy but also explores other CKD-related complications, such as metabolic acidosis, vitamin D deficiency, anorexia, and excess angiotensin II, as well as other related factors that play a role in CKD muscle atrophy, such as insulin resistance, hormones, hemodialysis, uremic toxins, intestinal flora imbalance, and miRNA. We highlight potential treatments and drugs that can effectively treat CKD-induced muscle atrophy in terms of complication treatment, nutritional supplementation, physical exercise, and drug intervention, thereby helping to improve the prognosis and quality of life of CKD patients.


Assuntos
Qualidade de Vida , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/terapia , Doença Crônica , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA