Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Antioxidants (Basel) ; 13(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38671897

RESUMO

Peroxiredoxin 6 (Prdx6), a unique 1-Cys member of the peroxiredoxin family, exhibits peroxidase activity, phospholipase activity, and lysophosphatidylcholine acyltransferase (LPCAT) activity. Prdx6 has been known to be an important enzyme for the maintenance of lipid peroxidation repair, cellular metabolism, inflammatory signaling, and antioxidant damage. Growing research has demonstrated that the altered activity of this enzyme is linked with various pathological processes including central nervous system (CNS) disorders. This review discusses the distinctive structure, enzyme activity, and function of Prdx6 in different CNS disorders, as well as emphasizing the significance of Prdx6 in neurological disorders.

2.
Immunobiology ; 229(1): 152778, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38159526

RESUMO

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER) stress-induced protein, and it has been reported that ER stress and unfolded protein response (UPR) are closely related to the immune system. The spleen is an important immune organ and we have shown in our previous research that MANF is expressed in human spleen tissues. However, there have been limited studies about the effect of MANF on spleen development. In this study, we detected MANF expression in spleen tissues and found that MANF was expressed in the red pulp and marginal zone. Additionally, MANF was localized in the CD68+ and CD138+ cells of adult rat spleen tissues, but not in the CD3+ cells. We performed immunohistochemical staining to detect MANF expression in the spleen tissues of rats that were different ages, and we found that MANF+ cells were localized together in the spleen tissues of rats that were 1-4 weeks old. MANF was also expressed in CD68+ cells in the spleen tissues of rats and mice. Furthermore, we found that MANF deficiency inhibited white pulp development in MANF knockout mice, thus indicating that MANF played an important role in the white pulp development of rodent spleen tissues.


Assuntos
Astrócitos , Baço , Animais , Humanos , Camundongos , Ratos , Astrócitos/metabolismo , Estresse do Retículo Endoplasmático , Camundongos Knockout , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Baço/metabolismo , Resposta a Proteínas não Dobradas
3.
Medicine (Baltimore) ; 102(42): e35268, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37861541

RESUMO

A member of the short-chain dehydrogenase/reductase superfamily (DHRS1, SDR19C1) is a member of the short-chain dehydrogenase/reductase superfamily and a potential predictor of hepatocellular carcinoma (HCC). However, the role of DHRS1 in HCC immunity remains unclear. We systematically analyzed the association between DHRS1 and HCC immunity with transcriptional and clinical data from the Tumor Immune Estimation Resource, an integrated repository portal for tumor immune system interactions, and cBioPortal databases. Six DHRS1-associated immunomodulators strongly correlated with survival and were uncovered by exploiting univariate and multivariate Cox analyses. We created a risk score for each patient by adding the points from each immunomodulator and then classified them into high and low risk categories. Survival analysis were used to compare the overall survival between the 2 groups, and the receiver operating characteristic curve was applied to assess the accuracy of the risk score. Data from our center were adopted as the external validation set, the risk score was calculated using the risk coefficient of the 6 genes in the training cohort, and survival analysis were executed to verify the experimental group results. A nomogram was ultimately constructed with the R package. Our data revealed a correlation between the levels of immune cell infiltration and either the DHRS1 gene copy numbers or mRNA levels in HCC. Second, we generated a signature based on the 6 DHRS1-related immunomodulators (KDR, TNFRSF4, CD276, TNFSF4, SLAMF6, and SIGLEC9). We postulate that the generated risk scores would serve as an independent indicator of HCC prognosis, with an area under the receiver operating characteristic curve for the risk score of 0.743. We further established external validation sets to reconfirm the predictive validity of the risk score. Finally, a prognostic nomogram and calibration curve were created. The DHRS1 gene may exert an impact on HCC immunity. We posit that the nominated immune signature based on DHRS1-associated immunomodulators could constitute a promising prognostic biomarker in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Prognóstico , Neoplasias Hepáticas/genética , Adjuvantes Imunológicos , Biologia Computacional , Oxirredutases , Ligante OX40 , Antígenos B7
4.
Acta Pharm Sin B ; 13(10): 4234-4252, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37799387

RESUMO

The mesencephalic astrocyte-derived neurotrophic factor (MANF) has been recently identified as a neurotrophic factor, but its role in hepatic fibrosis is unknown. Here, we found that MANF was upregulated in the fibrotic liver tissues of the patients with chronic liver diseases and of mice treated with CCl4. MANF deficiency in either hepatocytes or hepatic mono-macrophages, particularly in hepatic mono-macrophages, clearly exacerbated hepatic fibrosis. Myeloid-specific MANF knockout increased the population of hepatic Ly6Chigh macrophages and promoted HSCs activation. Furthermore, MANF-sufficient macrophages (from WT mice) transfusion ameliorated CCl4-induced hepatic fibrosis in myeloid cells-specific MANF knockout (MKO) mice. Mechanistically, MANF interacted with S100A8 to competitively block S100A8/A9 heterodimer formation and inhibited S100A8/A9-mediated TLR4-NF-κB signal activation. Pharmacologically, systemic administration of recombinant human MANF significantly alleviated CCl4-induced hepatic fibrosis in both WT and hepatocytes-specific MANF knockout (HKO) mice. This study reveals a mechanism by which MANF targets S100A8/A9-TLR4 as a "brake" on the upstream of NF-κB pathway, which exerts an impact on macrophage differentiation and shed light on hepatic fibrosis treatment.

5.
Chemistry ; 29(66): e202302125, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37673787

RESUMO

Iron-based nanomaterials have shown great promise for tumor ferrotherapy in recent years. However, nanoparticle-induced ferroptosis has low therapeutic efficacy owing to unsatisfactory Fenton reaction activity in a typical tumor microenvironment. In this study, NIR light-activated Fe/PPy-RGD nanopolymers were developed to combine photothermal therapy and ferrotherapy and achieve enhanced antitumor activity. Importantly, Fe/PPy-RGD exhibited excellent therapeutic performance under NIR light activation both in vitro and in vivo. Under irradiation with NIR light, the heat generated by Fe/PPy-RGD not only induced a therapeutic photothermal effect but also enhanced the release of iron ions and the Fenton reaction by inducing ferroptosis. Additionally, by virtue of RGD conjugation and its ultrasmall size, Fe/PPy-RGD could effectively accumulate at tumor sites in living mice after systemic administration and could be monitored via MR imaging. Hence, this study provides a promising approach for integrating ferrotherapy with photothermal therapy to achieve enhanced tumor treatment.


Assuntos
Nanopartículas , Neoplasias , Camundongos , Animais , Fototerapia/métodos , Linhagem Celular Tumoral , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Imageamento por Ressonância Magnética , Ferro , Oligopeptídeos , Microambiente Tumoral
6.
Adv Healthc Mater ; 12(28): e2301035, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37450348

RESUMO

The greatest barrier to the further development and clinical application of tumor image-guided photodynamic therapy (PDT), is the inconsistency between the fluorescence intensity and singlet oxygen generation yield of the photosensitizer under light excitation. Herein, a novel donor-acceptor (D-A) system is designed from the point of molecular selection by wrapping a classical porphyrin molecule (5,10,15,20-tetraphenylphorphyrin, H2 TPP) as an acceptor into conjugated polymer (Poly[N,N'-bis(4-butylpheny)-N,N'-bis(phenyl)benzidine], ADS254BE) as a donor through fluorescence resonance energy transfer (FRET) mechanism, which exhibits bright red emission centered at 650 nm (quantum yield, 0.12), relatively large Stoke shift of 276 nm, enhanced singlet oxygen generation rate of 0.73, and excellent photostability. The investigations on distribution and killing effect of nanomaterials in cancer cells reveal that ADS254BE/H2 TPP NPs can accumulate in the cytoplasm for imaging while simultaneously producing a large amount of singlet oxygen to remarkably kill cancer cells, which can be used for real-time image-guided PDT. In the xenograft tumor model, real-time imaging and long-term tracing in tumor tissue with ADS254BE/H2 TPP NPs disclose that the growth of lung cancer in mice can be effectively inhibited during in situ imaging. From the standpoint of molecular engineering design, this work provides a feasible strategy for novel D-A systems to improve the development of image-guided PDT.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Animais , Camundongos , Fotoquimioterapia/métodos , Oxigênio Singlete , Indicadores e Reagentes , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias/terapia , Modelos Animais de Doenças
8.
Acta Pharmacol Sin ; 44(6): 1175-1190, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36635421

RESUMO

Mesencephalic astrocyte-derived neurotrophic factor (MANF), an endoplasmic reticulum stress-inducible secreting protein, has evolutionarily conserved immune-regulatory function that contributes to the negative regulation of inflammation in macrophages. In this study, we investigated the profiles of MANF in the macrophages of the patients with active inflammatory bowel disease (IBD) and the mice with experimental colitis, which was induced in both myeloid cell-specific MANF knockout mice and wild-type mice by 3% dextran sodium sulfate (DSS) for 7 days. We found that MANF expression was significantly increased in intestinal macrophages from both the mice with experimental colitis and patients with active IBD. DSS-induced colitis was exacerbated in myeloid cell-specific MANF knockout mice. Injection of recombinant human MANF (rhMANF, 10 mg·kg-1·d-1, i.v.) from D4 to D6 significantly ameliorated experimental colitis in DSS-treated mice. More importantly, MANF deficiency in myeloid cells resulted in a dramatic increase in the number of Ly6ChiCX3CRint proinflammatory macrophages in colon lamina propria of DSS-treated mice, and the proinflammatory cytokines and chemokines were upregulated as well. Meanwhile, we demonstrated that MANF attenuated Th17-mediated immunopathology by inhibiting BATF2-mediated innate immune response and downregulating CXCL9, CXCL10, CXCL11 and IL-12p40; MANF functioned as a negative regulator in inflammatory macrophages via inhibiting CHOP-BATF2 signaling pathway, thereby protecting against DSS-induced mouse colitis. These results suggest that MANF ameliorates colon injury by negatively regulating inflammatory macrophage transformation, which shed light on a potential therapeutic target for IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Transdução de Sinais , Macrófagos/metabolismo , Colo/metabolismo , Fatores de Crescimento Neural/genética , Camundongos Knockout , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Receptor 1 de Quimiocina CX3C
9.
Acta Pharmacol Sin ; 44(1): 157-168, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35655095

RESUMO

Hepatic steatosis plays a detrimental role in the onset and progression of alcohol-associated liver disease (ALD). Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an evolutionarily conserved protein related to the unfolded protein response. Recent studies have demonstrated that MANF plays an important role in liver diseases. In this study, we investigated the role of MANF in ethanol-induced steatosis and the underlying mechanisms. We showed that the hepatic MANF expression was markedly upregulated in mouse model of ALD by chronic-plus-single-binge ethanol feeding. Moreover, after chronic-plus-binge ethanol feeding, hepatocyte-specific MANF knockout (HKO) mice displayed more severe hepatic steatosis and liver injury than wild-type (WT) control mice. Immunoprecipitation-coupled MS proteomic analysis revealed that arginosuccinate synthase 1 (ASS1), a rate-limiting enzyme in the urea cycle, resided in the same immunoprecipitated complex with MANF. Hepatocyte-specific MANF knockout led to decreased ASS1 activity, whereas overexpression of MANF contributed to enhanced ASS1 activity in vitro. In addition, HKO mice displayed unique urea cycle metabolite patterns in the liver with elevated ammonia accumulation after ethanol feeding. ASS1 is known to activate AMPK by generating an intracellular pool of AMP from the urea cycle. We also found that MANF supplementation significantly ameliorated ethanol-induced steatosis in vivo and in vitro by activating the AMPK signaling pathway, which was partly ASS1 dependent. This study demonstrates a new mechanism in which MANF acts as a key molecule in maintaining hepatic lipid homeostasis by enhancing ASS1 activity and uncovers an interesting link between lipid metabolism and the hepatic urea cycle under excessive alcohol exposure.


Assuntos
Fígado Gorduroso , Hepatopatias Alcoólicas , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Astrócitos/metabolismo , Etanol/toxicidade , Fígado Gorduroso/induzido quimicamente , Hepatócitos/metabolismo , Fígado/metabolismo , Camundongos Knockout , Fatores de Crescimento Neural/metabolismo , Proteômica , Ureia/metabolismo
10.
Antioxid Redox Signal ; 38(16-18): 1184-1200, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36401357

RESUMO

Aims: Nonalcoholic fatty liver disease (NAFLD) is becoming the most common chronic liver disease globally, which is defined as an excess accumulation of fat caused by the imbalance of lipogenesis and lipid catabolism. Recently, increasing evidence suggests that peroxiredoxin 6 (PRDX6) is involved in the pathogenesis and progression of NAFLD. However, little is known regarding its role in liver lipid catabolism. Results: We found that PRDX6 level was significantly increased in liver tissues after high-fat diet (HFD) treatment. PRDX6 knockout (KO) exacerbated HFD-induced hepatic steatosis. PRDX6 KO did not affect messenger RNA (mRNA) and protein levels of peroxisome proliferator-activated receptor alpha (PPARα). However, PRDX6 KO decreased the mRNA and protein levels of carnitine palmitoyltransferase-1alpha (CPT-1α) and acyl-CoA oxidase 1 (ACOX1), the target genes of PPARα. PRDX6 KO also did not activate AMP-activated protein kinase (AMPK)α/proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), the upstream signal of PPARα. However, PRDX6 KO reduces the levels of PPARα activators, the oxidized fatty acids (9- and 13-hydroxyoctadecadienoic acid) in HFD rats. More interestingly, PRDX6 promoted the production of oxidized fatty acids by hydrolyzing oxidized low-density lipoprotein (Ox-LDL), which depends on its phospholipase A2 (PLA2) activity. PRDX6 mutation on its PLA2 and its competitive phospholipase inhibitor inhibited the production of the oxidized fatty acids as well as the activation of PPARα. Furthermore, PRDX6 overexpression enhanced the transcriptional activation of PPARα. Innovation and Conclusion: This study elucidates for the first time the role of PLA2 enzyme activity of PRDX6 in fatty acid oxidation and reveals a novel mechanism of PRDX6 involved in liver steatosis. Antioxid. Redox Signal. 38, 1184-1200.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta Hiperlipídica/efeitos adversos , PPAR alfa/genética , Peroxirredoxina VI/metabolismo , Fígado/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , RNA Mensageiro/metabolismo
11.
Pharmacol Res Perspect ; 11(1): e01041, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36572650

RESUMO

Glioma is the most common and aggressive primary brain tumor in adults with high morbidity and mortality. Rapid proliferation and diffuse migration are the main obstacles to successful glioma treatment. Xanthatin, a sesquiterpene lactone purified from Xanthium strumarium L., possesses a significant antitumor role in several malignant tumors. In this study, we report that xanthatin suppressed glioma cells proliferation and induced apoptosis in a time- and concentration-dependent manner, and was accompanied by autophagy inhibition displaying a significantly reduced LC3 punctate fluorescence and LC3II/I ratio, decreased level of Beclin 1, while increased accumulation of p62. Notably, treating glioma cells with xanthatin resulted in obvious activation of the PI3K-Akt-mTOR signaling pathway, as indicated by increased mTOR and Akt phosphorylation, decreased ULK1 phosphorylation, which is important in modulating autophagy. Furthermore, xanthatin-mediated pro-apoptosis in glioma cells was significantly reversed by autophagy inducers (rapamycin or Torin1), or PI3K-mTOR inhibitor NVP-BEZ235. Taken together, these findings indicate that anti-proliferation and pro-apoptosis effects of xanthatin in glioma are most likely by inhibiting autophagy via activation of PI3K-Akt-mTOR pathway, suggesting a potential therapeutic strategy against glioma.


Assuntos
Glioma , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Autofagia
12.
Neurosci Bull ; 39(2): 273-291, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35986882

RESUMO

MAGED4B belongs to the melanoma-associated antigen family; originally found in melanoma, it is expressed in various types of cancer, and is especially enriched in glioblastoma. However, the functional role and molecular mechanisms of MAGED4B in glioma are still unclear. In this study, we found that the MAGED4B level was higher in glioma tissue than that in non-cancer tissue, and the level was positively correlated with glioma grade, tumor diameter, Ki-67 level, and patient age. The patients with higher levels had a worse prognosis than those with lower MAGED4B levels. In glioma cells, MAGED4B overexpression promoted proliferation, invasion, and migration, as well as decreasing apoptosis and the chemosensitivity to cisplatin and temozolomide. On the contrary, MAGED4B knockdown in glioma cells inhibited proliferation, invasion, and migration, as well as increasing apoptosis and the chemosensitivity to cisplatin and temozolomide. MAGED4B knockdown also inhibited the growth of gliomas implanted into the rat brain. The interaction between MAGED4B and tripartite motif-containing 27 (TRIM27) in glioma cells was detected by co-immunoprecipitation assay, which showed that MAGED4B was co-localized with TRIM27. In addition, MAGED4B overexpression down-regulated the TRIM27 protein level, and this was blocked by carbobenzoxyl-L-leucyl-L-leucyl-L-leucine (MG132), an inhibitor of the proteasome. On the contrary, MAGED4B knockdown up-regulated the TRIM27 level. Furthermore, MAGED4B overexpression increased TRIM27 ubiquitination in the presence of MG132. Accordingly, MAGED4B down-regulated the protein levels of genes downstream of ubiquitin-specific protease 7 (USP7) involved in the tumor necrosis factor-alpha (TNF-α)-induced apoptotic pathway. These findings indicate that MAGED4B promotes glioma growth via a TRIM27/USP7/receptor-interacting serine/threonine-protein kinase 1 (RIP1)-dependent TNF-α-induced apoptotic pathway, which suggests that MAGED4B is a potential target for glioma diagnosis and treatment.


Assuntos
Glioma , Melanoma , Humanos , Fator de Necrose Tumoral alfa , Proteínas de Ligação a DNA/metabolismo , Peptidase 7 Específica de Ubiquitina , Cisplatino , Temozolomida , Fatores de Transcrição , Proliferação de Células , Linhagem Celular Tumoral , Apoptose , Proteínas Nucleares/genética
13.
Biomed Pharmacother ; 156: 113931, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36411620

RESUMO

Hepatic fibrosis is a chronic inflammatory process with hepatic stellate cells (HSCs) activation. Peroxiredoxin 6 (PRDX6), a multifunctional protein, was reported to protect against liver injury induced by ischemia/reperfusion and high-fat diet. However, the effect of PRDX6 on hepatic fibrosis remains unclear. Male Sprague-Dawley rats were treated with carbon tetrachloride (CCl4) for 4-8 weeks to induce hepatic fibrosis. Here, we found that PRDX6 was mainly expressed in hepatocytes and significantly upregulated in CCl4-induced liver fibrosis. To clarify the impact of PRDX6 in hepatic fibrosis, we constructed a PRDX6 knockout (PRDX6-/-) rat model by using CRISPR/Cas9 method. We found that PRDX6 deficiency accelerated CCl4-induced liver fibrosis. Furthermore, we found that PRDX6 knockout promoted α-SMA expression in normal and fibrotic conditions, especially in hepatic fibrosis. PRDX6 knockout significantly upregulated Col1α1 and Col3α1 in fibrotic tissues. To explore the underlying mechanisms, we identified mesencephalic astrocyte-derived neurotrophic factor (MANF), a suppressor for hepatic fibrosis and NF-κB pathway, as an interacting protein of PRDX6. PRDX6 promoted MANF secretion by binding to the C-terminus of MANF, which did not depend on its peroxidase and PLA2 activities. Similarly, MANF increased PRDX6 protein level and promoted its secretion. Additionally, PRDX6 knockout increased p65 level either in cytoplasm or nuclei in HSCs under fibrotic condition. In conclusion, PRDX6 is an effective inhibitor for hepatic fibrosis through a non-enzymic dependent interacting with MANF, which will offer a potential target for hepatic fibrosis therapy.


Assuntos
Células Estreladas do Fígado , Peroxirredoxina VI , Ratos , Masculino , Animais , Células Estreladas do Fígado/metabolismo , Peroxirredoxina VI/genética , Peroxirredoxina VI/farmacologia , Ratos Sprague-Dawley , Fibrose , Cirrose Hepática/metabolismo , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo
14.
Front Pharmacol ; 13: 975250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386180

RESUMO

Long noncoding RNAs (lncRNAs) are defined as transcripts of more than 200 nucleotides that have little or no coding potential. LncRNAs function as key regulators in diverse physiological and pathological processes. However, the roles of lncRNAs in lipopolysaccharide (LPS)-induced acute liver injury (ALI) are still elusive. In this study, we report the roles of lncRNA Gm26917 induced by LPS in modulating liver inflammation. As key components of the innate immune system, macrophages play critical roles in the initiation, progression and resolution of ALI. Our studies demonstrated that Gm26917 localized in the cytoplasm of hepatic macrophages and globally regulated the expression of inflammatory genes and the differentiation of macrophages. In vivo study showed that lentivirus-mediated gene silencing of Gm26917 attenuated liver inflammation and protected mice from LPS-induced ALI. Furthermore, mechanistic study showed that the 3'-truncation of Gm26917 interacted with the N-terminus of Annexin A1, a negative regulator of the NF-κB signaling pathway. We also found that Gm26917 knockdown suppressed NF-κB activity by decreasing the ubiquitination of Annexin A1 and its interaction with NEMO. In addition, expression of Gm26917 in inflammatory macrophages was regulated by the transcription factor forkhead box M1 (FOXM1). LPS treatment dramatically increased the binding of FOXM1 to the promoter region of Gm26917 in macrophages. In summary, our findings suggest that lncRNA Gm26917 silencing protects against LPS-induced liver injury by regulating the TLR4/NF-κB signaling pathway in macrophages.

16.
Front Neurol ; 13: 985700, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267888

RESUMO

Introduction: This study was conducted to evaluate whether a non-immersive virtual reality (VR)-based intervention can enhance lower extremity movement in patients with cerebral infarction and whether it has greater short-term and long-term effectiveness than conventional therapies (CTs). Materials and methods: This was a single-blinded, randomized clinical controlled trial. Forty-four patients with subacute cerebral infarction were randomly allocated to the VR or CT group. All intervention sessions were delivered in the inpatient unit for 3 weeks. Outcomes were measured before (baseline) and after the interventions and at 3-month, 6-month and 1-year follow-ups. The outcomes included clinical assessments of movement and balance function using the Fugl-Meyer Assessment of Lower Extremity (FMA-LE) and Berg Balance Scale (BBS), and gait parameters in the sagittal plane. Results: In the VR group, the walking speed after intervention, at 3-month, 6-month, and 1-year follow-ups were significantly greater than baseline (p = 0.01, <0.001, 0.007, and <0.001, respectively). Compared with baseline, BBS scores after intervention, at 3-month, 6-month, and 1-year follow-ups were significantly greater in both the VR group (p = 0.006, 0.002, <0.001, and <0.001, respectively) and CT group (p = <0.001, 0.002, 0.001, and <0.001, respectively), while FMA-LE scores after intervention, at 3-month, 6-month, and 1-year follow-ups were significant increased in the VR group (p = 0.03, <0.001, 0.003, and <0.001, respectively), and at 3-month, 6-month, and 1-year follow-ups in the CT group (p = 0.02, 0.004 and <0.001, respectively). In the VR group, the maximum knee joint angle in the sagittal plane enhanced significantly at 6-month follow-up from that at baseline (p = 0.04). Conclusion: The effectiveness of the non-immersive VR-based intervention in our study was observed after the intervention and at the follow-ups, but it was not significantly different from that of CTs. In sum, our results suggest that non-immersive VR-based interventions may thus be a valuable addition to conventional physical therapies to enhance treatment efficacy. Clinical trial registration: http://www.chictr.org.cn/showproj.aspx?proj=10541, ChiCTR-IOC-15006064.

17.
Med Oncol ; 39(12): 250, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209344

RESUMO

Intrahepatic cholangiocarcinoma (ICC) has a poor prognosis. The bifunctional protein peroxiredoxin 6 (PRDX6), which has both calcium-independent phospholipase A2 (iPLA2) and glutathione peroxidase (GPx) activity, participates in the development of multiple tumors. However, the function and clinical significance of PRDX6 in ICC remain unclear. In this study, we characterized PRDX6 in both human ICC and thioacetamide (TAA)-induced rat ICC. We found PRDX6 was significantly increased in ICC tissues, compared with the peritumoral tissues, and PRDX6 expression level was positively correlated with the malignant phenotype in ICC patients. Furthermore, PRDX6 genetic knockout significantly inhibited the tumor progression in rats. By using RNA sequencing analysis, we found 127 upregulated genes and 321 downregulated genes after PRDX6 knockout. In addition, we noticed a significant repression in the Wnt7a/b cascade, which has been shown to play an important role in the occurrence of ICC. We confirmed that gene expressions in the Wnt7a/b cascade were inhibited in ICC tissues after PRDX6 knockout by using qRT-PCR and immunohistochemistry analysis. Collectively, our findings suggest that PRDX6 may promote ICC by regulating the Wnt7a/b pathway, which could be a novel therapeutic target for ICC.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Peroxirredoxina VI/metabolismo , Animais , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Humanos , Peroxirredoxina VI/genética , Ratos , Tioacetamida
18.
Nanomedicine (Lond) ; 17(11): 741-752, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35506304

RESUMO

Aim: To construct an edaravone-encapsulated liposomes (EDV-LIPs) formulation against acute ischemic stroke. Methods: EDV-LIPs were prepared by the film dispersion method. The biosafety was evaluated both in vitro and in vivo by flow cytometry and the histological staining method. Biodistribution and therapeutic effect of EDV-LIPs against acute ischemic stroke was investigated by fluorescent imaging, the behavior test, laser speckle imaging and triphenyltetrazolium chloride staining. Results: The nanoliposomes had a long circulation time and could accumulate in the brain lesion region in ischemic stroke rats. EDV-LIPs show good biosafety. EDV-LIPs could restore more cerebral blood flow, reduce infarct volume and decrease neuronal apoptosis. Conclusion: EDV-LIPs provide an effective alternative for drug-targeted delivery against acute ischemic stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Encéfalo , Edaravone/farmacologia , Edaravone/uso terapêutico , Lipossomos/farmacologia , Ratos , Acidente Vascular Cerebral/tratamento farmacológico , Distribuição Tecidual
19.
Basic Res Cardiol ; 117(1): 24, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35469044

RESUMO

Impaired endothelium-dependent vasodilation has been suggested to be a key component of coronary microvascular dysfunction (CMD). A better understanding of endothelial pathways involved in vasodilation in human arterioles may provide new insight into the mechanisms of CMD. The goal of this study is to investigate the role of TRPV4, NOX4, and their interaction in human arterioles and examine the underlying mechanisms. Arterioles were freshly isolated from adipose and heart tissues obtained from 71 patients without coronary artery disease, and vascular reactivity was studied by videomicroscopy. In human adipose arterioles (HAA), ACh-induced dilation was significantly reduced by TRPV4 inhibitor HC067047 and by NOX 1/4 inhibitor GKT137831, but GKT137831 did not further affect the dilation in the presence of TRPV4 inhibitors. GKT137831 also inhibited TRPV4 agonist GSK1016790A-induced dilation in HAA and human coronary arterioles (HCA). NOX4 transcripts and proteins were detected in endothelial cells of HAA and HCA. Using fura-2 imaging, GKT137831 significantly reduced GSK1016790A-induced Ca2+ influx in the primary culture of endothelial cells and TRPV4-WT-overexpressing human coronary artery endothelial cells (HCAEC). However, GKT137831 did not affect TRPV4-mediated Ca2+ influx in non-phosphorylatable TRPV4-S823A/S824A-overexpressing HCAEC. In addition, treatment of HCAEC with GKT137831 decreased the phosphorylation level of Ser824 in TRPV4. Finally, proximity ligation assay (PLA) revealed co-localization of NOX4 and TRPV4 proteins. In conclusion, both TRPV4 and NOX4 contribute to ACh-induced dilation in human arterioles from patients without coronary artery disease. NOX4 increases TRPV4 phosphorylation in endothelial cells, which in turn enhances TRPV4-mediated Ca2+ entry and subsequent endothelium-dependent dilation in human arterioles.


Assuntos
Doença da Artéria Coronariana , Vasodilatação , Arteríolas/metabolismo , Doença da Artéria Coronariana/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Humanos , NADPH Oxidase 4/metabolismo , Fosforilação , Canais de Cátion TRPV , Vasodilatação/fisiologia
20.
Genes (Basel) ; 13(4)2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35456475

RESUMO

Many post-transcriptional mRNA processing steps play crucial roles in tumorigenesis and the progression of cancers, such as N6-methyladenosine (m6A) modification and alternative splicing. Upregulation of methyltransferase-like 3 (METTL3), the catalytic core of the m6A methyltransferase complex, increases m6A levels and results in significant effects on the progression of hepatocellular carcinoma (HCC). However, alternative splicing of METTL3 has not been fully investigated, and the functions of its splice variants remain unclear. Here, we analyzed both our and online transcriptomic data, obtaining 13 splice variants of METTL3 in addition to canonical full-length METTL3-A in HCC cell lines and tissues. Validated by RT-qPCR and Western blotting, we found that METTL3-D, one of the splice variants expressing a truncated METTL3 protein, exhibits higher levels than METTL3-A in normal human livers but lower levels than METTL3-A in HCC tumor tissues and cell lines. Further functional assays demonstrated that METTL3-D expression decreased cellular m6A modification, inhibited the proliferation, migration, and invasion of HCC cells, and was negatively associated with the malignancy of patient tumors, exhibiting functions opposite to those of full-length METTL3-A. This study demonstrates that the METTL3-D splice variant is a tumor suppressor that could potentially be used as a target for HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Adenosina/genética , Adenosina/metabolismo , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/patologia , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA