Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Synth Biol ; 12(9): 2715-2724, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37651305

RESUMO

Efficient and cost-effective conversion of CO2 to biomass holds the potential to address the climate crisis. Light-driven CO2 conversion can be realized by combining inorganic semiconductors with enzymes or cells. However, designing enzyme cascades for converting CO2 to multicarbon compounds is challenging, and inorganic semiconductors often possess cytotoxicity. Therefore, there is a critical need for a straightforward semiconductor biohybrid system for CO2 conversion. Here, we used a visible-light-responsive and biocompatible C3N4 porous nanosheet, decorated with formate dehydrogenase, formaldehyde dehydrogenase, and alcohol dehydrogenase to establish an enzyme-photocoupled catalytic system, which showed a remarkable CO2-to-methanol conversion efficiency with an apparent quantum efficiency of 2.48% in the absence of externally added electron mediator. To further enable the in situ transformation of methanol into biomass, the enzymes were displayed on the surface of Komagataella phaffii, which was further coupled with C3N4 to create an organic semiconductor-enzyme-cell hybrid system. Methanol was produced through enzyme-photocoupled CO2 reduction, achieving a rate of 4.07 mg/(L·h), comparable with reported rates from photocatalytic systems employing mediators or photoelectrochemical cells. The produced methanol can subsequently be transported into the cell and converted into biomass. This work presents a sustainable, environmentally friendly, and cost-effective enzyme-photocoupled biocatalytic system for efficient solar-driven conversion of CO2 within a microbial cell.


Assuntos
Dióxido de Carbono , Metanol , Álcool Desidrogenase/genética , Biocatálise , Transporte Biológico
2.
ACS Nano ; 16(9): 15261-15272, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36049456

RESUMO

Miniature energy storage devices simultaneously combining high energy output and bioavailability could greatly promote the practicability of green, safe, and nontoxic in vivo detection, such as for noninvasive monitoring or treatment in the gastrointestinal tract, which is still challenging. Herein, we report ingestible and nutritive zinc-ion-based hybrid micro-supercapacitors (ZMSCs) consisting of an edible active carbon microcathode and zinc microanode, which can be inserted into a standard-sized capsule and ingested in a pig stomach. With features including flexibility, light weight, and shape adaptability, a single microdevice displays a high energy density of 215.1 µWh cm-2, superior to that of state-of-the-art biocompatible SCs/MSCs and even traditional ZMSCs reported previously. It also delivers an areal capacitance of 605 mF cm-2 and a high working voltage of 1.8 V, exceeding that of miniaturized commercial button batteries (1.55 V, RENATA 337). Comprehensive studies in vivo and in vitro demonstrate that the ZMSCs with high biocompatibility and safety not only power electronic equipment in the porcine stomach without a voltage booster but also act as a nutritional supplement of trace element zinc within the dose range, as well as the ability of potent antibacterial activity against bacterium Escherichia coli during the discharging process. This work provides an example for the design and fabrication of edible energy storage devices with high performance.


Assuntos
Oligoelementos , Zinco , Animais , Antibacterianos , Carbono , Estômago , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA