Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mar Environ Res ; 196: 106427, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479295

RESUMO

The Western Indian Continental Shelf (WICS) experiences upwelling during the Southwest Monsoon (SWM), leading to deoxygenation and acidification of subsurface waters. The region has patchy growth of corals, e.g. in the Grande Island and Angria Bank. Measurements made during the late SWM of 2022 reveal that the shelf waters around the Grande Island were subject to varying environmental conditions, viz. lower temperature (21.3-26.1°C), oxygen (0-4.9 mL L-1) and pHT (7.506-7.927). Complete anoxia was associated with sulphide build-up to a maximum of 5.9 µmol L-1 at 17 m depth. An additional episodic condition (high temperature, low oxygen and pH) also occurred associated presumably with a plankton bloom in April 2017. Hence, unlike the offshore coral site Angria Bank, waters around the Grande Island experiences extreme changes in physico-chemical conditions (e.g. Ωarg ∼1.2-1.8 during October 2022) seasonally as reported here. The biogeochemical conditions are however not as intense (Ωarg = 0.6) as observed along the eastern boundary upwelling system of the Pacific Ocean.


Assuntos
Antozoários , Animais , Ecossistema , Oceano Pacífico , Índia , Oxigênio , Recifes de Corais
2.
Environ Monit Assess ; 195(6): 635, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37133635

RESUMO

Gonyaulax polygramma, a bloom-forming dinoflagellate, has been repeatedly observed along the southeastern Arabian Sea in recent years. During our study in October 2021, a patch of reddish-brown water was observed in the nearshore waters off Kannur (southwest coast of India) and later identified as Gonyaulax polygramma using scanning electron microscopy (SEM) and HPLC-based phytoplankton marker pigments. Gonyaulax polygramma accounted for 99.4% of the phytoplankton abundance at the bloom location, with high concentrations of peridinin and chlorophyll-a at the study site. High concentration of SiO42- was observed at the bloom site, while other nutrients were lower than the previously reported values. The bloom of Gonyaulax polygramma also resulted in high concentrations of dimethylsulfide, an anti-greenhouse gas, at the bloom site. In addition to onsite observation, Sentinel-3 satellite data was also used in the detection and validation of the observed bloom using the NDCI index. From the satellite image, it was evident that the bloom persisted at the mouth of the rivers during the study period. Since the red tide of Gonyaulax polygramma has been observed recurrently in the southeastern Arabian Sea, it is proposed to use satellites to detect and monitor the bloom on a routine basis.


Assuntos
Dinoflagellida , Monitoramento Ambiental , Monitoramento Ambiental/métodos , Fitoplâncton , Proliferação Nociva de Algas , Clorofila A
3.
Mar Pollut Bull ; 189: 114738, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36842280

RESUMO

Dimethylsulphide is a dominant biogenic sulphur anti-greenhouse gas produced by marine phytoplankton. A non-axenic culture of Skeletonema costatum was studied to comprehend the effects of different growth stages and light stress on DMSP/DMS production. The intracellular DMSP concentration increased during late exponential to mid-stationary phase and attained a maximum (0.59 pg S cell-1) during the stationary phase, indicating more contribution from actively dividing smaller cells. Likewise, exposure to first light after a 12-hour dark phase caused stress, invariably leading to elevated levels of DMS (~9 fold). These observations were upheld by additional laboratory and field experiments, and a field time-series observation, which recorded higher DMS concentrations during exposure to first light after a dark cycle and during early mornings, respectively. While our study depicts the variable DMSP and DMS concentrations during different growth stages of S. costatum, it gives new information on the effect of light stress on DMS production.


Assuntos
Diatomáceas , Fitoplâncton , Enxofre/farmacologia
4.
Environ Monit Assess ; 194(10): 716, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048260

RESUMO

The seasonal and spatial distribution of total organic carbon (TOC) is presented for the coastal waters of the eastern Arabian Sea, which experiences seasonal suboxia during the late southwest monsoon (SWM). This study reveals that high TOC was observed off Kochi as compared to Goa and Mangalore transects, and may be attributed to stronger upwelling along the Kerala coast. This is also supported by the excess carbon due to upwelling during the late SWM that varied from 37 µM (Goa), 39 µM (Mangalore), to 51 µM (Kochi). Our seasonal data from 2014 to 2020 at the Goa transect indicates that high TOC is seen during late SWM to fall inter monsoon (FIM) and between the late northeast monsoon (NEM) to the early spring inter monsoon (SIM). The high TOC concentrations and C/N ratios observed during the FIM are a combination of high primary production, the buildup of remnant organic matter from the previous season (due to prevailing low oxygen conditions), accumulation of refractory organic carbon, and release from diatoms (especially Chaetoceros sp.). Inter-annual variations indicate that phytoplankton blooms resulted in higher TOC concentrations, especially during the year 2020. Based on a comparison with an Elnino-Southern Oscillation (ENSO) year (2015), we can infer that the partitioning of carbon may increase from particulate to dissolved phase in future warming scenarios.


Assuntos
Carbono , Diatomáceas , Monitoramento Ambiental , Fitoplâncton , Estações do Ano
5.
Environ Sci Pollut Res Int ; 28(29): 39655-39667, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33761073

RESUMO

Carbon neutrality of tropical reservoirs is a big concern in recent years as some estimates project high methane emission from these reservoirs. While there are studies available on the impact of physical processes (stratification and mixing) on the biogeochemistry of tropical reservoirs, not much information is available on the inter-annual variability in the low-oxygen conditions and production/accumulation of hydrogen sulphide (H2S) and methane (CH4) during summer. This paper presents time series data based on monthly in situ observations from a tropical reservoir (Tillari, Maharashtra) situated in the Western Ghats in India. Sampling was carried out for temperature, dissolved oxygen (DO), H2S, and CH4 at a fixed location from March 2010 until June 2014. The reservoir experiences stable stratification during summer (March to June) with complete loss of oxygen and production of H2S (max. ~ 9 µM) and CH4 (max. ~ 185 µM) in the profundal zone. During the summer stratification, the hypolimnion acted as a pool of CH4 with integrated values ranging between 3502 and 41,632 mg m-2. However, the intensity and duration of anoxia varied during different years, influencing H2S and CH4 production. Mixing in the reservoir was observed between July and September in association with the monsoonal runoff, which increased the DO concentrations in the sub-surface layers. Besides, complete mixing was observed between December and February due to winter convection. This, however, was found to play an important role, as weaker mixing in the preceding year was associated with severe oxygen loss in the profundal zone during the following summer with a production of H2S and CH4. In contrast, more robust mixing during winter led to moderate low-oxygen conditions with less production of these gases in the subsequent summer. Based on our observations and considering a large number of reservoirs in the tropics, we hypothesise that with the present trends of global warming and less cold winters, low-oxygen conditions in the profundal zone may become more severe in the future with positive feedback on H2S and CH4 production during summer.


Assuntos
Sulfeto de Hidrogênio , Metano , Dióxido de Carbono/análise , Água Doce , Índia , Metano/análise , Oxigênio , Estações do Ano
6.
Mar Pollut Bull ; 163: 111939, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33383319

RESUMO

We report seasonal and temporal variation of total organic carbon (TOC) in the eastern Arabian Sea (AS). In comparison to the deep, TOC in the top 100 m showed spatial variation with higher concentrations towards northern AS during North east monsoon (NEM) and South west monsoon (SWM). A comparison with the US-JGOFS data (1995) shows warmer temperatures, enhanced TOC and low chlorophyll in the recent years. High TOC is associated with Arabian Sea high saline waters (ASHSW), advected from the Arabian Gulf, might have resulted in an enhancement of TOC in the eastern AS. This excess TOC supports a high abundance of bacteria despite the low primary productivity. TOC oxidation accounted for 14.3% and 22.5% of oxygen consumption for waters with potential density between 24.5 and 27.3 kg/m3. This study attains great significance considering the missing links with respect to the role of transport processes in ocean deoxygenation under ongoing warming scenarios.


Assuntos
Oxigênio , Água do Mar , Carbono , Clorofila
7.
Mar Environ Res ; 160: 105023, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32907734

RESUMO

In the present study, using in-situ and satellite observations, we investigate the influence of physical processes on the enhancement of phytoplankton biomass in the eastern Arabian Sea (EAS). Water column measurements were carried out from 9°N to 21°N (stations II-2 to II-14) along 68°E transect in the EAS during the beginning of fall intermonsoon (FIM) of 2014. Both in-situ and satellite-derived chlorophyll a (Chl a) showed higher biomass at 15°N (station II-8) compared to northern and southern stations. We explored the possible physical processes which can lead to high biological productivity at this station. Our study shows that nearly two times enhancement in Chl a at station II-8 was contributed by an open-ocean front, which occurred two days before the measurement. Based on phytoplankton marker pigments, it was evident that haptophytes were abundant at II-8 with a minor contribution from diatoms and dinoflagellates. This condition also led to a high concentration (4.9 nM) of dimethylsulphide (DMS), an anti-green house gas with a net flux of 3.76 µmol m-2d-1 at this site. Among the picophytoplankton, Synechococcus were abundant at this station, however Prochlorococcus were absent as confirmed by both marker pigment and flow cytometric counts. The case study presented here demonstrates the dynamic nature of open ocean fronts and their overall contribution to the productivity of the eastern Arabian Sea during the oligotrophic inter-monsoon period.


Assuntos
Diatomáceas , Fitoplâncton , Biomassa , Clorofila A , Oceanos e Mares , Tempo (Meteorologia)
8.
Mar Environ Res ; 157: 104926, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32275508

RESUMO

Seasonal hypoxia/suboxia (at times anoxia) towards the end of Southwest monsoon (SWM; June to September) at the coastal time series site off Goa, West coast of India was found to influence the dynamics of phytoplankton biomass, community structure and production of climatically active gas, dimethylsulphide (DMS). In this diatom dominated study region, high DMS production in the subsurface waters during late SWM might possible be attributed to the stress experienced by micro- and macro-algae from the prevailing low oxygen subsurface waters through different pathways specifically believed to be via methylation pathway (see Schafer et al., 2010). Based on laboratory experiments, we hypothesize presence of floating seaweeds mostly Sargassum species washed from the shore to the study site to contribute sizably to DMS production in the water column as they sink and degrade during the senescence phase. However, we are yet to address its loss/emission processes across the oxic-hypoxic boundary of seasonal (and permanent) oxygen minimum zone of the northern Indian Ocean, which is important from the viewpoint of global climate change.


Assuntos
Monitoramento Ambiental , Fitoplâncton , Sulfetos/metabolismo , Biomassa , Eutrofização , Índia , Oceano Índico , Oxigênio , Sargassum , Estações do Ano , Água do Mar
9.
Environ Sci Pollut Res Int ; 25(26): 26279-26296, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29978315

RESUMO

For source identification, a field campaign involving simultaneous sampling of particulate matter (PM10) was conducted at eight sampling sites in the Indian mainland during winter 2014. The sampling sites include Delhi (upper IGP), Lucknow (middle IGP), and Kolkata (lower IGP) in the Indo-Gangetic Plains (IGP); Mohal-Kullu and Darjeeling in the Indo-Himalayan Range (IHR). In addition, Ajmer, located upwind of the IGP in NW-India and Giridih and Bhubaneswar, in the downwind to the IGP has also been chosen. To characterize the sources of the ambient PM10, stable isotope ratios of carbon (δ13CTC) and nitrogen (δ15NTN) for the total carbon (TC) and total nitrogen (TN) fractions have been considered. Ancillary chemical parameters, such as organic carbon (OC), elemental carbon (EC), and water-soluble ionic components (WSIC) mass concentrations are also presented in this paper. There was very small variation in the daily average δ13CTC ratios (- 24.8 to - 25.9‰) among the sites. Comparison with end-member stable C isotopic signatures of major typical sources suggests that the PM10 at the sites was mainly from fossil fuel and biofuel and biomass combustion. Daily average δ15NTN ratios were not observed to vary much between sites either (8.3 to 11.0‰), and the low δ15NTN levels also indicate substantial contributions from biofuel and biomass burning of primarily C3 andC4 plant matter. Graphical abstract Scatter plot of the average (± 1 standard deviation (SD)) δ13CTC (‰) compared to δ15NTN (‰) at the sampling sites.


Assuntos
Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Material Particulado/análise , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Biomassa , Carbono/análise , Clima Desértico , Monitoramento Ambiental , Índia , Nitrogênio , Estações do Ano
10.
Nat Commun ; 9(1): 1265, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593290

RESUMO

The fate of the enormous amount of reactive nitrogen released to the environment by human activities in India is unknown. Here we show occurrence of seasonal stratification and generally low concentrations of dissolved inorganic combined nitrogen, and high molecular nitrogen (N2) to argon ratio, thus suggesting seasonal loss to N2 in anoxic hypolimnia of several dam-reservoirs. However, 15N-experiments yielded low rates of denitrification, anaerobic ammonium oxidation and dissimilatory nitrate reduction to ammonium-except in the presence of methane (CH4) that caused ~12-fold increase in denitrification. While nitrite-dependent anaerobic methanotrophs belonging to the NC10 phylum were present, previously considered aerobic methanotrophs were far more abundant (up to 13.9%) in anoxic hypolimnion. Methane accumulation in anoxic freshwater systems seems to facilitate rapid loss of reactive nitrogen, with generally low production of nitrous oxide (N2O), through widespread coupling between methanotrophy and denitrification, potentially mitigating eutrophication and emissions of CH4 and N2O to the atmosphere.

11.
Appl Environ Microbiol ; 77(9): 3137-40, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21378049

RESUMO

Dimethylsulfide (DMS) is an important climatically active gas. In the sea, DMS is produced primarily by microbial metabolism of the compatible solute dimethylsulfoniopropionate. Laboratory growth of Bacteroidetes with DMS resulted in its oxidation to dimethyl sulfoxide but only in the presence of glucose. We hypothesized that electrons liberated from sulfur oxidation were used to augment biomass production.


Assuntos
Biomassa , Flavobacterium/crescimento & desenvolvimento , Flavobacterium/metabolismo , Sulfetos/metabolismo , Flavobacterium/isolamento & purificação , Oxirredução , Água do Mar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA