Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 461, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627519

RESUMO

EphB6 is an understudied ephrin receptor tyrosine pseudokinase that is downregulated in multiple types of metastatic cancers. Unlike its kinase-active counterparts which autophosphorylate and transmit signals upon intercellular interaction, little is known about how EphB6 functions in the absence of intrinsic kinase activity. Here, we unveil a molecular mechanism of cell-cell interaction driven by EphB6. We identify ephrinB1 as a cognate ligand of EphB6 and show that in trans interaction of EphB6 with ephrinB1 on neighboring cells leads to the formation of large co-clusters at the plasma membrane. These co-clusters exhibit a decreased propensity towards endocytosis, suggesting a unique characteristic for this type of cell-cell interaction. Using lattice light-sheet microscopy, 3D structured illumination microscopy and cryo-electron tomography techniques, we show that co-clustering of EphB6 and ephrinB1 promotes the formation of double-membrane tubular structures between cells. Importantly, we also demonstrate that these intercellular structures stabilize cell-cell adhesion, leading to a reduction in the invasive behavior of cancer cells. Our findings rationalize a role for EphB6 pseudokinase as a tumor suppressor when interacting with its ligands in trans.


Assuntos
Fosforilação , Invasividade Neoplásica
2.
iScience ; 26(7): 107210, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37485371

RESUMO

Coxiella burnetii is an obligate zoonotic bacterium that targets macrophages causing a disease called Q fever. It has a biphasic developmental life cycle where the extracellular and metabolically inactive small cell variant (SCV) transforms inside the host into the vegetative large cell variant (LCV). However, details about the morphological and structural changes of this transition are still lacking. Here, we used cryo-electron tomography to image both SCV and LCV variants grown either under axenic conditions or purified directly from host cells. We show that SCVs are characterized by equidistant stacks of inner membrane that presumably facilitate the transition to LCV, a transition coupled with the expression of the Dot/Icm type IVB secretion system (T4BSS). A class of T4BSS particles were associated with extracellular densities possibly involved in host infection. Also, SCVs contained spherical multilayered membrane structures of different sizes and locations suggesting no connection to sporulation as once assumed.

3.
Biochem Soc Trans ; 50(1): 95-105, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35076655

RESUMO

Viruses can be enveloped or non-enveloped, and require a host cell to replicate and package their genomes into new virions to infect new cells. To accomplish this task, viruses hijack the host-cell machinery to facilitate their replication by subverting and manipulating normal host cell function. Enveloped viruses can have severe consequences for human health, causing various diseases such as acquired immunodeficiency syndrome (AIDS), seasonal influenza, COVID-19, and Ebola virus disease. The complex arrangement and pleomorphic architecture of many enveloped viruses pose a challenge for the more widely used structural biology techniques, such as X-ray crystallography. Cryo-electron tomography (cryo-ET), however, is a particularly well-suited tool for overcoming the limitations associated with visualizing the irregular shapes and morphology enveloped viruses possess at macromolecular resolution. The purpose of this review is to explore the latest structural insights that cryo-ET has revealed about enveloped viruses, with particular attention given to their architectures, mechanisms of entry, replication, assembly, maturation and egress during infection. Cryo-ET is unique in its ability to visualize cellular landscapes at 3-5 nanometer resolution. Therefore, it is the most suited technique to study asymmetric elements and structural rearrangements of enveloped viruses during infection in their native cellular context.


Assuntos
Vírus/ultraestrutura , Microscopia Crioeletrônica , Ebolavirus/metabolismo , Ebolavirus/ultraestrutura , Tomografia com Microscopia Eletrônica , HIV-1/metabolismo , HIV-1/ultraestrutura , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 1/ultraestrutura , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/ultraestrutura , Vírus/metabolismo
4.
Mol Microbiol ; 117(3): 610-617, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34592048

RESUMO

Electron cryo-microscopy (cryo-EM) has lately emerged as a powerful method in structural biology and cell biology. While cryo-EM single-particle analysis (SPA) is now routinely delivering structures of purified proteins and protein complexes at near-atomic resolution, the use of electron cryo-tomography (cryo-ET), together with subtomogram averaging, is allowing visualization of macromolecular complexes in their native cellular environment, at unprecedented resolution. The unique ability of cryo-EM to provide information at many spatial resolution scales from ångströms to microns makes it an invaluable tool that bridges the classic "resolution-gap" between structural biology and cell biology domains. Like in many other fields of biology, in recent years, cryo-EM has revolutionized our understanding of pathogen biology, host-pathogen interaction and has made significant strides toward structure-based drug discovery. In a very recent example, during the ongoing coronavirus disease (COVID-19) pandemic, the structure of the stabilized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein was deciphered by SPA. This led to the development of multiple vaccines. Alongside, cryo-ET provided key insights into the structure of the native virion, mechanism of its entry, replication, and budding; demonstrating the unrivaled power of cryo-EM in investigating pathogen biology, host-pathogen interaction, and drug discovery. In this review, we showcase a few examples of how different imaging modalities within cryo-EM have enabled the study of microbiology and host-pathogen interaction.


Assuntos
COVID-19 , SARS-CoV-2 , Biologia , Microscopia Crioeletrônica/métodos , Descoberta de Drogas , Interações Hospedeiro-Patógeno , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA