Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; PP2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619965

RESUMO

OBJECTIVE: Real-time measurement of biological joint moment could enhance clinical assessments and generalize exoskeleton control. Accessing joint moments outside clinical and laboratory settings requires harnessing non-invasive wearable sensor data for indirect estimation. Previous approaches have been primarily validated during cyclic tasks, such as walking, but these methods are likely limited when translating to non-cyclic tasks where the mapping from kinematics to moments is not unique. METHODS: We trained deep learning models to estimate hip and knee joint moments from kinematic sensors, electromyography (EMG), and simulated pressure insoles from a dataset including 10 cyclic and 18 non-cyclic activities. We assessed estimation error on combinations of sensor modalities during both activity types. RESULTS: Compared to the kinematics-only baseline, adding EMG reduced RMSE by 16.9% at the hip and 30.4% at the knee (p<0.05) and adding insoles reduced RMSE by 21.7% at the hip and 33.9% at the knee (p<0.05). Adding both modalities reduced RMSE by 32.5% at the hip and 41.2% at the knee (p<0.05) which was significantly higher than either modality individually (p<0.05). All sensor additions improved model performance on non-cyclic tasks more than cyclic tasks (p<0.05). CONCLUSION: These results demonstrate that adding kinetic sensor information through EMG or insoles improves joint moment estimation both individually and jointly. These additional modalities are most important during non-cyclic tasks, tasks that reflect the variable and sporadic nature of the real-world. SIGNIFICANCE: Improved joint moment estimation and task generalization is pivotal to developing wearable robotic systems capable of enhancing mobility in everyday life.

2.
IEEE Trans Biomed Eng ; 70(12): 3312-3320, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37262114

RESUMO

Genu recurvatum, or knee hyperextension, is a complex gait pattern with a variety of etiologies, and is often connected with knee weakness, lack of motor control, and spasticity. Because of the atypical forces placed on the soft tissues, early treatment or prevention of knee hyperextension may help prevent further degradation of the knee joint. In this study, we assessed the feasibility of a knee exoskeleton to mitigate hyperextension and increase swing range of motion in five children/adolescents who presented with unilateral genu recurvatum. Over the course of three visits, each participant practiced walking with the exoskeleton, which provided torque assistance during both stance and swing based on an impedance control law. In final validation trials, the exoskeleton was effective in reducing knee hyperextension (0.2 ± 4.7° average peak knee extension without exo to 9.9 ± 10.3° with exo) and improving swing range of motion by 14.0 ± 4.5° increase on average. However, while the exoskeleton was effective in normalizing the kinematics, it did not lead to improved spatio-temporal asymmetry measures. This work showcases a promising potential application of a robotic knee exoskeleton for improving the kinematic characteristics of genu recurvatum gait.


Assuntos
Exoesqueleto Energizado , Humanos , Criança , Adolescente , Estudos de Viabilidade , Articulação do Joelho , Joelho , Caminhada , Marcha , Fenômenos Biomecânicos , Amplitude de Movimento Articular
3.
Sci Robot ; 8(75): eadf1080, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36791215

RESUMO

Maintaining balance throughout daily activities is challenging because of the unstable nature of the human body. For instance, a person's delayed reaction times limit their ability to restore balance after disturbances. Wearable exoskeletons have the potential to enhance user balance after a disturbance by reacting faster than physiologically possible. However, "artificially fast" balance-correcting exoskeleton torque may interfere with the user's ensuing physiological responses, consequently hindering the overall reactive balance response. Here, we show that exoskeletons need to react faster than physiological responses to improve standing balance after postural perturbations. Delivering ankle exoskeleton torque before the onset of physiological reactive joint moments improved standing balance by 9%, whereas delaying torque onset to coincide with that of physiological reactive ankle moments did not. In addition, artificially fast exoskeleton torque disrupted the ankle mechanics that generate initial local sensory feedback, but the initial reactive soleus muscle activity was only reduced by 18% versus baseline. More variance of the initial reactive soleus muscle activity was accounted for using delayed and scaled whole-body mechanics [specifically center of mass (CoM) velocity] versus local ankle-or soleus fascicle-mechanics, supporting the notion that reactive muscle activity is commanded to achieve task-level goals, such as maintaining balance. Together, to elicit symbiotic human-exoskeleton balance control, device torque may need to be informed by mechanical estimates of global sensory feedback, such as CoM kinematics, that precede physiological responses.


Assuntos
Exoesqueleto Energizado , Robótica , Humanos , Eletromiografia , Tornozelo/fisiologia , Articulação do Tornozelo/fisiologia
4.
IEEE Trans Biomed Eng ; 70(2): 747-755, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36018867

RESUMO

OBJECTIVE: Running-specific prosthetic feet are curved cantilever springs, distinguished from ordinary prosthetic feet by their size, shape, and greater ability to store and return elastic potential energy. Finite element analyses show how modifications to prosthesis shape alter the multidimensional and nonlinear mechanics, but designers seeking to prescribe custom mechanics are limited by the complex constraints and high dimensionality of possible geometries. METHODS: We introduce two simple formulations for describing foot mechanics, and use them with a custom spline-based shape optimization to generate new prosthetic foot shapes given desired endpoint mechanics. We then tackle a relevant example problem using this approach, designing and characterizing three running-specific prosthetic feet with similar vertical and angular deflections but varied horizontal deflections, with the expectation that knee extension moments would increase with anterior deflection of the toe. Finally, we compare the prostheses' endpoint mechanics and resulting biomechanics in an athlete with unilateral transfemoral amputation. RESULTS: The shape optimization was able to derive shapes that substantially alter prosthesis mechanics along all dimensions of endpoint behavior, and benchtop testing validated the behavior of two new feet constructed from the optimization. The subject's knee moments increased with horizontal endpoint deflection as expected. CONCLUSION: We developed and validated a shape optimization tool using a simplified formulation of foot behavior to achieve desired running prosthesis mechanics. SIGNIFICANCE: With this framework, researchers can begin to elucidate the link between prosthesis mechanics and athlete biomechanics and performance.


Assuntos
Amputados , Membros Artificiais , Corrida , Humanos , Desenho de Prótese , , Amputação Cirúrgica , Fenômenos Biomecânicos , Marcha
5.
Wearable Technol ; 4: e15, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38487763

RESUMO

The biological ankle dorsiflexes several degrees during swing to provide adequate clearance between the foot and ground, but conventional energy storage and return (ESR) prosthetic feet remain in their neutral position, increasing the risk of toe scuffs and tripping. We present a new prosthetic ankle intended to reduce fall risk by dorsiflexing the ankle joint during swing, thereby increasing the minimum clearance between the foot and ground. Unlike previous approaches to providing swing dorsiflexion such as powered ankles or hydraulic systems with dissipative yielding in stance, our ankle device features a spring-loaded linkage that adopts a neutral angle during stance, allowing ESR, but adopts a dorsiflexed angle during swing. The ankle unit was designed, fabricated, and assessed in level ground walking trials on a unilateral transtibial prosthesis user to experimentally validate its stance and swing phase behaviors. The assessment consisted of three conditions: the ankle in an operational configuration, the ankle in a locked configuration (unable to dorsiflex), and the subject's daily use ESR prosthesis. When the ankle was operational, minimum foot clearance (MFC) increased by 13 mm relative to the locked configuration and 15 mm relative to his daily use prosthesis. Stance phase energy return was not significantly impacted in the operational configuration. The increase in MFC provided by the passive dorsiflexing ankle prosthesis may be sufficient to decrease the rate of falls experienced by prosthesis users in the real world.

6.
J Neuroeng Rehabil ; 18(1): 128, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433472

RESUMO

BACKGROUND: User preference has the potential to facilitate the design, control, and prescription of prostheses, but we do not yet understand which physiological factors drive preference, or if preference is associated with clinical benefits. METHODS: Subjects with unilateral below-knee amputation walked on a custom variable-stiffness prosthetic ankle and manipulated a dial to determine their preferred prosthetic ankle stiffness at three walking speeds. We evaluated anthropomorphic, metabolic, biomechanical, and performance-based descriptors at stiffness levels surrounding each subject's preferred stiffness. RESULTS: Subjects preferred lower stiffness values at their self-selected treadmill walking speed, and elected to walk faster overground with ankle stiffness at or above their preferred stiffness. Preferred stiffness maximized the kinematic symmetry between prosthetic and unaffected joints, but was not significantly correlated with body mass or metabolic rate. CONCLUSION: These results imply that some physiological factors are weighted more heavily when determining preferred stiffness, and that preference may be associated with clinically relevant improvements in gait.


Assuntos
Tornozelo , Membros Artificiais , Articulação do Tornozelo , Fenômenos Biomecânicos , Marcha , Humanos , Preferência do Paciente , Desenho de Prótese , Caminhada
7.
Artigo em Inglês | MEDLINE | ID: mdl-33104504

RESUMO

Patient preference of lower limb prosthesis behavior informally guides clinical decision making, and may become increasingly important for tuning new robotic prostheses. However, the processes for quantifying preference are still being developed, and the strengths and weaknesses of preference are not adequately understood. The present study sought to characterize the reliability (consistency) of patient preference of alignment during level-ground walking, and determine the patient-preferred ankle angle for ascent and descent of a 10° ramp, with implications for the design and control of robotic prostheses. Seven subjects with transtibial amputation walked over level ground, and ascended and descended a 10° ramp on a semi-active prosthetic ankle capable of unweighted repositioning in dorsiflexion and plantarflexion. Preferred ankle angle was measured with an adaptive forced-choice psychophysics paradigm, in which subjects walked on a randomized static ankle angle and reported whether they would prefer the ankle to be dorsiflexed or plantarflexed. Subjects had reliable preferences for alignment during level-ground walking, with deviations of 1.5° from preference resulting in an 84% response rate preferring changes toward the preference. Relative to level walking, subjects preferred 7.8° (SD: 4.8°) of dorsiflexion during ramp ascent, and 5.3° (SD: 3.8°) plantarflexion during ramp descent. As the ankle angle better matched the ramp angle, socket pressures and tibial progression (shank pitch) both more closely mirrored those during level walking. These findings provide baseline behaviors for prosthetic ankles capable of adapting to slopes based on patient preference, and provide strong evidence that people with transtibial amputation can finely perceive ankle alignment.


Assuntos
Amputados , Membros Artificiais , Tornozelo , Articulação do Tornozelo , Fenômenos Biomecânicos , Marcha , Humanos , Desenho de Prótese , Reprodutibilidade dos Testes , Caminhada
8.
Wearable Technol ; 2: e9, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38486628

RESUMO

Individuals with lower limb amputation experience reduced ankle push-off work in the absence of functional muscles spanning the joint, leading to decreased walking performance. Conventional energy storage and return (ESR) prostheses partially compensate by storing mechanical energy during midstance and returning this energy during the terminal stance phase of gait. These prostheses can provide approximately 30% of the push-off work performed by a healthy ankle-foot during walking. Novel prostheses that return more normative levels of mechanical energy may improve walking performance. In this work, we designed a Decoupled ESR (DESR) prosthesis which stores energy usually dissipated at heel-strike and loading response, and returns this energy during terminal stance, thus increasing the mechanical push-off work done by the prosthesis. This decoupling is achieved by switching between two different cam profiles that produce distinct, nonlinear torque-angle mechanics. The cams automatically interchange at key points in the gait cycle via a custom magnetic switching system. Benchtop characterization demonstrated the successful decoupling of energy storage and return. The DESR mechanism was able to capture energy at heel-strike and loading response, and return it later in the gait cycle, but this recycling was not sufficient to overcome mechanical losses. In addition to its potential for recycling energy, the DESR mechanism also enables unique mechanical customizability, such as dorsiflexion during swing phase for toe clearance, or increasing the rate of energy release at push-off.

9.
Sci Rep ; 10(1): 16067, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999317

RESUMO

When fitting prosthetic feet, prosthetists fuse information from their visual assessment of patient gait with the patient's communicated perceptions and preferences. In this study, we sought to simultaneously and independently assess patient and prosthetist preference for prosthetic foot stiffness using a custom variable-stiffness prosthesis. In the first part of the experiment, seven subjects with below-knee amputation walked on the variable-stiffness prosthetic foot set to a randomized stiffness, while several prosthetist subjects simultaneously observed their gait. After each trial, the amputee subjects and prosthetist subjects indicated the change to stiffness that they would prefer (increase or decrease). This paradigm allowed us to simultaneously measure amputee subject and prosthetist subject preferences, and provided a reliability index indicating the consistency of their preferences. In the second part of the experiment, amputee subjects were instructed to communicate verbally with one prosthetist subject to arrive at a mutually preferred stiffness. On average, prosthetist subjects preferred a 26% higher stiffness than amputee subjects (p < 0.001), though this depended on the amputee subject (p < 0.001). Prosthetist subjects were also considerably less consistent than amputee subjects in their preferences (CV of 5.6% for amputee subjects, CV of 23% for prosthetist subjects; p = 0.014). Mutual preference seemed to be dictated by the specific patient-prosthetist dynamic, and no clear trends emerged.


Assuntos
Amputados , Articulação do Tornozelo/fisiologia , Membros Artificiais , Articulações do Pé/fisiologia , Desenho de Prótese , Amputação Cirúrgica , Fenômenos Biomecânicos , Marcha , Humanos , Articulação do Joelho/fisiologia , Perna (Membro) , Preferência do Paciente , Percepção
10.
IEEE Int Conf Rehabil Robot ; 2019: 892-898, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31374743

RESUMO

Current methods for describing and characterizing the mechanical behavior of running-specific prosthetic feet are incomplete, and this has limited our understanding of how design parameters impact athlete performance. Deflections induced by most ground reaction forces consist of vertical, horizontal, and angular components, but previous work has focused only on the vertical component. Furthermore, the deflection depends heavily on the direction of the force, which changes throughout stance phase of running. In this paper, we introduce several methods that can be used to more precisely describe and characterize the mechanics of running-specific prosthetic feet. We use a custom finite element model to simulate these methods, and validate them with a series of tests using a prototype foot in a universal testing machine.


Assuntos
Membros Artificiais , Pé/fisiologia , Desenho de Prótese , Corrida/fisiologia , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Dinâmica não Linear , Fatores de Tempo
11.
J Neuroeng Rehabil ; 15(1): 99, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30409168

RESUMO

BACKGROUND: Prosthetic feet are spring-like, and their stiffness critically affects the wearer's stability, comfort, and energetic cost of walking. Despite the importance of stiffness in ambulation, the prescription process often entails testing a limited number of prostheses, which may result in patients receiving a foot with suboptimal mechanics. To understand the resolution with which prostheses should be individually optimized, we sought to characterize below-knee prosthesis users' psychophysical sensitivity to prosthesis stiffness. METHODS: We used a novel variable-stiffness ankle prosthesis to measure the repeatability of user-selected preferred stiffness, and implemented a psychophysical experiment to characterize the just noticeable difference of stiffness during locomotion. RESULTS: All eight subjects with below-knee amputation exhibited high repeatability in selecting their Preferred Stiffness (mean coefficient of variation: 14.2 ± 1.7%) and were able to correctly identify a 7.7 ± 1.3% change in ankle stiffness (with 75% accuracy). CONCLUSIONS: This high sensitivity suggests prosthetic foot stiffness should be tuned with a high degree of precision on an individual basis. These results also highlight the need for a pairing of new robotic prescription tools and mechanical characterizations of prosthetic feet.


Assuntos
Amputados , Membros Artificiais , Percepção , Desenho de Prótese , Fenômenos Biomecânicos , Feminino , Humanos , Masculino
12.
IEEE Trans Neural Syst Rehabil Eng ; 25(12): 2375-2386, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28885156

RESUMO

Most commercially available prosthetic feet do not exhibit a biomimetic torque-angle relationship, and are unable to modulate their mechanics to assist with other mobility tasks, such as stairs and ramps. In this paper, we present a quasi-passive ankle-foot prosthesis with a customizable torque-angle curve and an ability to quickly modulate ankle stiffness between tasks. The customizable torque-angle curve is obtained with a cam-based transmission and a fiberglass leaf spring. To achieve variable stiffness, the leaf spring's support conditions can be actively modulated by a small motor, shifting the torque-angle curve to be more or less stiff. We introduce the design, characterize the available torque-angle curves, and present kinematics from a transtibial amputee subject performing level-ground walking, stair ascent/descent, and ramp ascent/descent. The subject exhibited a more normative range of motion on stairs and ramps at lower stiffness levels, and preferred different stiffness levels for each task. Paired with an appropriate intent recognition system, our novel ankle prosthesis could improve gait biomechanics during walking and many other mobility tasks.


Assuntos
Tornozelo , , Próteses e Implantes , Adulto , Algoritmos , Amputados , Fenômenos Biomecânicos , Marcha/fisiologia , Humanos , Masculino , Dinâmica não Linear , Desenho de Prótese , Torque
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 2228-2231, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28324960

RESUMO

Individuals with post-stroke hemiparesis often have difficulty standing out of a chair. One way to potentially improve sit-to-stand is to provide knee extension assistance using a powered knee exoskeleton. An exoskeleton providing unilateral, partial assistance during sit-to-stand would need to be torque-controllable. There are no knee exoskeletons on the market suitable for conducting experiments assisting stroke patients with sit-to-stand, so to enable such experiments a research device was developed. The purpose of this report is to present the design of a novel knee exoskeleton actuator that uses a fiberglass leaf spring in series to improve torque-controllability, and present a characterization of the actuator performance. The actuator is capable of the required torque and speed for sit-to-stand, has high bandwidth (25 Hz), low output impedance at low frequencies (<;0.5 Nm), and excellent torque tracking. An orthotic brace built upon this actuator will enable an in-depth study on the biomechanical effects of providing stroke subjects with knee extension assistance during sit-to-stand.


Assuntos
Articulação do Joelho , Aparelhos Ortopédicos , Paresia , Fenômenos Biomecânicos , Humanos , Movimento , Postura , Acidente Vascular Cerebral/complicações , Torque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA