Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 26(7): 3920-3929, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32162439

RESUMO

Large-scale terrestrial carbon (C) estimating studies using methods such as atmospheric inversion, biogeochemical modeling, and field inventories have produced different results. The goal of this study was to integrate fine-scale processes including land use and land cover change into a large-scale ecosystem framework. We analyzed the terrestrial C budget of the conterminous United States from 1971 to 2015 at 1-km resolution using an enhanced dynamic global vegetation model and comprehensive land cover change data. Effects of atmospheric CO2 fertilization, nitrogen deposition, climate, wildland fire, harvest, and land use/land cover change (LUCC) were considered. We estimate annual C losses from cropland harvest, forest clearcut and thinning, fire, and LUCC were 436.8, 117.9, 10.5, and 10.4 TgC/year, respectively. C stored in ecosystems increased from 119,494 to 127,157 TgC between 1971 and 2015, indicating a mean annual net C sink of 170.3 TgC/year. Although ecosystem net primary production increased by approximately 12.3 TgC/year, most of it was offset by increased C loss from harvest and natural disturbance and increased ecosystem respiration related to forest aging. As a result, the strength of the overall ecosystem C sink did not increase over time. Our modeled results indicate the conterminous US C sink was about 30% smaller than previous modeling studies, but converged more closely with inventory data.


Assuntos
Carbono , Ecossistema , Carbono/análise , Sequestro de Carbono , Clima , Mudança Climática , Florestas , Estados Unidos
2.
Carbon Balance Manag ; 11(1): 10, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27375771

RESUMO

BACKGROUND: Human activities have diverse and profound impacts on ecosystem carbon cycles. The Piedmont ecoregion in the eastern United States has undergone significant land use and land cover change in the past few decades. The purpose of this study was to use newly available land use and land cover change data to quantify carbon changes within the ecoregion. Land use and land cover change data (60-m spatial resolution) derived from sequential remotely sensed Landsat imagery were used to generate 960-m resolution land cover change maps for the Piedmont ecoregion. These maps were used in the Integrated Biosphere Simulator (IBIS) to simulate ecosystem carbon stock and flux changes from 1971 to 2010. RESULTS: Results show that land use change, especially urbanization and forest harvest had significant impacts on carbon sources and sinks. From 1971 to 2010, forest ecosystems sequestered 0.25 Mg C ha-1 yr-1, while agricultural ecosystems sequestered 0.03 Mg C ha-1 yr-1. The total ecosystem C stock increased from 2271 Tg C in 1971 to 2402 Tg C in 2010, with an annual average increase of 3.3 Tg C yr-1. CONCLUSIONS: Terrestrial lands in the Piedmont ecoregion were estimated to be weak net carbon sink during the study period. The major factors contributing to the carbon sink were forest growth and afforestation; the major factors contributing to terrestrial emissions were human induced land cover change, especially urbanization and forest harvest. An additional amount of carbon continues to be stored in harvested wood products. If this pool were included the carbon sink would be stronger.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA