Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
bioRxiv ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38915658

RESUMO

Studying protein isoforms is an essential step in biomedical research; at present, the main approach for analyzing proteins is via bottom-up mass spectrometry proteomics, which return peptide identifications, that are indirectly used to infer the presence of protein isoforms. However, the detection and quantification processes are noisy; in particular, peptides may be erroneously detected, and most peptides, known as shared peptides, are associated to multiple protein isoforms. As a consequence, studying individual protein isoforms is challenging, and inferred protein results are often abstracted to the gene-level or to groups of protein isoforms. Here, we introduce IsoBayes, a novel statistical method to perform inference at the isoform level. Our method enhances the information available, by integrating mass spectrometry proteomics and transcriptomics data in a Bayesian probabilistic framework. To account for the uncertainty in the measurement process, we propose a two-layer latent variable approach: first, we sample if a peptide has been correctly detected (or, alternatively filter peptides); second, we allocate the abundance of such selected peptides across the protein(s) they are compatible with. This enables us, starting from peptide-level data, to recover protein-level data; in particular, we: i) infer the presence/absence of each protein isoform (via a posterior probability), ii) estimate its abundance (and credible interval), and iii) target isoforms where transcript and protein relative abundances significantly differ. We benchmarked our approach in simulations, and in two multi-protease real datasets: our method displays good sensitivity and specificity when detecting protein isoforms, its estimated abundances highly correlate with the ground truth, and can detect changes between protein and transcript relative abundances. IsoBayes is freely distributed as a Bioconductor R package, and is accompanied by an example usage vignette.

2.
Nat Neurosci ; 27(6): 1051-1063, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38594596

RESUMO

RNA isoforms influence cell identity and function. However, a comprehensive brain isoform map was lacking. We analyze single-cell RNA isoforms across brain regions, cell subtypes, developmental time points and species. For 72% of genes, full-length isoform expression varies along one or more axes. Splicing, transcription start and polyadenylation sites vary strongly between cell types, influence protein architecture and associate with disease-linked variation. Additionally, neurotransmitter transport and synapse turnover genes harbor cell-type variability across anatomical regions. Regulation of cell-type-specific splicing is pronounced in the postnatal day 21-to-postnatal day 28 adolescent transition. Developmental isoform regulation is stronger than regional regulation for the same cell type. Cell-type-specific isoform regulation in mice is mostly maintained in the human hippocampus, allowing extrapolation to the human brain. Conversely, the human brain harbors additional cell-type specificity, suggesting gain-of-function isoforms. Together, this detailed single-cell atlas of full-length isoform regulation across development, anatomical regions and species reveals an unappreciated degree of isoform variability across multiple axes.


Assuntos
Encéfalo , Análise de Célula Única , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Análise de Célula Única/métodos , Splicing de RNA/genética , Isoformas de RNA/genética , Processamento Alternativo/genética , Masculino , Camundongos Endogâmicos C57BL
3.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38617209

RESUMO

Most human Transcription factors (TFs) genes encode multiple protein isoforms differing in DNA binding domains, effector domains, or other protein regions. The global extent to which this results in functional differences between isoforms remains unknown. Here, we systematically compared 693 isoforms of 246 TF genes, assessing DNA binding, protein binding, transcriptional activation, subcellular localization, and condensate formation. Relative to reference isoforms, two-thirds of alternative TF isoforms exhibit differences in one or more molecular activities, which often could not be predicted from sequence. We observed two primary categories of alternative TF isoforms: "rewirers" and "negative regulators", both of which were associated with differentiation and cancer. Our results support a model wherein the relative expression levels of, and interactions involving, TF isoforms add an understudied layer of complexity to gene regulatory networks, demonstrating the importance of isoform-aware characterization of TF functions and providing a rich resource for further studies.

4.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38617311

RESUMO

Alternative splicing is a major contributor of transcriptomic complexity, but the extent to which transcript isoforms are translated into stable, functional protein isoforms is unclear. Furthermore, detection of relatively scarce isoform-specific peptides is challenging, with many protein isoforms remaining uncharted due to technical limitations. Recently, a family of advanced targeted MS strategies, termed internal standard parallel reaction monitoring (IS-PRM), have demonstrated multiplexed, sensitive detection of pre-defined peptides of interest. Such approaches have not yet been used to confirm existence of novel peptides. Here, we present a targeted proteogenomic approach that leverages sample-matched long-read RNA sequencing (LR RNAseq) data to predict potential protein isoforms with prior transcript evidence. Predicted tryptic isoform-specific peptides, which are specific to individual gene product isoforms, serve as "triggers" and "targets" in the IS-PRM method, Tomahto. Using the model human stem cell line WTC11, LR RNAseq data were generated and used to inform the generation of synthetic standards for 192 isoform-specific peptides (114 isoforms from 55 genes). These synthetic "trigger" peptides were labeled with super heavy tandem mass tags (TMT) and spiked into TMT-labeled WTC11 tryptic digest, predicted to contain corresponding endogenous "target" peptides. Compared to DDA mode, Tomahto increased detectability of isoforms by 3.6-fold, resulting in the identification of five previously unannotated isoforms. Our method detected protein isoform expression for 43 out of 55 genes corresponding to 54 resolved isoforms. This LR RNA seq-informed Tomahto targeted approach, called LRP-IS-PRM, is a new modality for generating protein-level evidence of alternative isoforms - a critical first step in designing functional studies and eventually clinical assays.

5.
bioRxiv ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38559226

RESUMO

Long-read RNA sequencing has shed light on transcriptomic complexity, but questions remain about the functionality of downstream protein products. We introduce Biosurfer, a computational approach for comparing protein isoforms, while systematically tracking the transcriptional, splicing, and translational variations that underlie differences in the sequences of the protein products. Using Biosurfer, we analyzed the differences in 32,799 pairs of GENCODE annotated protein isoforms, finding a majority (70%) of variable N-termini are due to the alternative transcription start sites, while only 9% arise from 5' UTR alternative splicing. Biosurfer's detailed tracking of nucleotide-to-residue relationships helped reveal an uncommonly tracked source of single amino acid residue changes arising from the codon splits at junctions. For 17% of internal sequence changes, such split codon patterns lead to single residue differences, termed "ragged codons". Of variable C-termini, 72% involve splice- or intron retention-induced reading frameshifts. We found an unusual pattern of reading frame changes, in which the first frameshift is closely followed by a distinct second frameshift that restores the original frame, which we term a "snapback" frameshift. We analyzed long read RNA-seq-predicted proteome of a human cell line and found similar trends as compared to our GENCODE analysis, with the exception of a higher proportion of isoforms predicted to undergo nonsense-mediated decay. Biosurfer's comprehensive characterization of long-read RNA-seq datasets should accelerate insights of the functional role of protein isoforms, providing mechanistic explanation of the origins of the proteomic diversity driven by the alternative splicing. Biosurfer is available as a Python package at https://github.com/sheynkman-lab/biosurfer.

6.
Sci Transl Med ; 16(730): eade2886, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38232136

RESUMO

Immunotherapy has emerged as a crucial strategy to combat cancer by "reprogramming" a patient's own immune system. Although immunotherapy is typically reserved for patients with a high mutational burden, neoantigens produced from posttranscriptional regulation may provide an untapped reservoir of common immunogenic targets for new targeted therapies. To comprehensively define tumor-specific and likely immunogenic neoantigens from patient RNA-Seq, we developed Splicing Neo Antigen Finder (SNAF), an easy-to-use and open-source computational workflow to predict splicing-derived immunogenic MHC-bound peptides (T cell antigen) and unannotated transmembrane proteins with altered extracellular epitopes (B cell antigen). This workflow uses a highly accurate deep learning strategy for immunogenicity prediction (DeepImmuno) in conjunction with new algorithms to rank the tumor specificity of neoantigens (BayesTS) and to predict regulators of mis-splicing (RNA-SPRINT). T cell antigens from SNAF were frequently evidenced as HLA-presented peptides from mass spectrometry (MS) and predict response to immunotherapy in melanoma. Splicing neoantigen burden was attributed to coordinated splicing factor dysregulation. Shared splicing neoantigens were found in up to 90% of patients with melanoma, correlated to overall survival in multiple cancer cohorts, induced T cell reactivity, and were characterized by distinct cells of origin and amino acid preferences. In addition to T cell neoantigens, our B cell focused pipeline (SNAF-B) identified a new class of tumor-specific extracellular neoepitopes, which we termed ExNeoEpitopes. ExNeoEpitope full-length mRNA predictions were tumor specific and were validated using long-read isoform sequencing and in vitro transmembrane localization assays. Therefore, our systematic identification of splicing neoantigens revealed potential shared targets for therapy in heterogeneous cancers.


Assuntos
Melanoma , Neoplasias , Humanos , Antígenos de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/terapia , Linfócitos T , Peptídeos/química , Imunoterapia/métodos
7.
bioRxiv ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37398049

RESUMO

Numerous factors regulate alternative splicing of human genes at a co-transcriptional level. However, how alternative splicing depends on the regulation of gene expression is poorly understood. We leveraged data from the Genotype-Tissue Expression (GTEx) project to show a significant association of gene expression and splicing for 6874 (4.9%) of 141,043 exons in 1106 (13.3%) of 8314 genes with substantially variable expression in ten GTEx tissues. About half of these exons demonstrate higher inclusion with higher gene expression, and half demonstrate higher exclusion, with the observed direction of coupling being highly consistent across different tissues and in external datasets. The exons differ with respect to sequence characteristics, enriched sequence motifs, RNA polymerase II binding, and inferred transcription rate of downstream introns. The exons were enriched for hundreds of isoform-specific Gene Ontology annotations, suggesting that the coupling of expression and alternative splicing described here may provide an important gene regulatory mechanism that might be used in a variety of biological contexts. In particular, higher inclusion exons could play an important role during cell division.

8.
Life Sci Alliance ; 6(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37197981

RESUMO

Connexin37-mediated regulation of cell cycle modulators and, consequently, growth arrest lack mechanistic understanding. We previously showed that arterial shear stress up-regulates Cx37 in endothelial cells and activates a Notch/Cx37/p27 signaling axis to promote G1 cell cycle arrest, and this is required to enable arterial gene expression. However, how induced expression of a gap junction protein, Cx37, up-regulates cyclin-dependent kinase inhibitor p27 to enable endothelial growth suppression and arterial specification is unclear. Herein, we fill this knowledge gap by expressing wild-type and regulatory domain mutants of Cx37 in cultured endothelial cells expressing the Fucci cell cycle reporter. We determined that both the channel-forming and cytoplasmic tail domains of Cx37 are required for p27 up-regulation and late G1 arrest. Mechanistically, the cytoplasmic tail domain of Cx37 interacts with, and sequesters, activated ERK in the cytoplasm. This then stabilizes pERK nuclear target Foxo3a, which up-regulates p27 transcription. Consistent with previous studies, we found this Cx37/pERK/Foxo3a/p27 signaling axis functions downstream of arterial shear stress to promote endothelial late G1 state and enable up-regulation of arterial genes.


Assuntos
Conexinas , Células Endoteliais , Células Endoteliais/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Conexinas/genética , Conexinas/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Núcleo Celular/metabolismo , Proteína alfa-4 de Junções Comunicantes
9.
Methods Mol Biol ; 2660: 357-372, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37191809

RESUMO

Traditionally, disease causal mutations were thought to disrupt gene function. However, it becomes more clear that many deleterious mutations could exhibit a "gain-of-function" (GOF) behavior. Systematic investigation of such mutations has been lacking and largely overlooked. Advances in next-generation sequencing have identified thousands of genomic variants that perturb the normal functions of proteins, further contributing to diverse phenotypic consequences in disease. Elucidating the functional pathways rewired by GOF mutations will be crucial for prioritizing disease-causing variants and their resultant therapeutic liabilities. In distinct cell types (with varying genotypes), precise signal transduction controls cell decision, including gene regulation and phenotypic output. When signal transduction goes awry due to GOF mutations, it would give rise to various disease types. Quantitative and molecular understanding of network perturbations by GOF mutations may provide explanations for 'missing heritability" in previous genome-wide association studies. We envision that it will be instrumental to push current paradigm toward a thorough functional and quantitative modeling of all GOF mutations and their mechanistic molecular events involved in disease development and progression. Many fundamental questions pertaining to genotype-phenotype relationships remain unresolved. For example, which GOF mutations are key for gene regulation and cellular decisions? What are the GOF mechanisms at various regulation levels? How do interaction networks undergo rewiring upon GOF mutations? Is it possible to leverage GOF mutations to reprogram signal transduction in cells, aiming to cure disease? To begin to address these questions, we will cover a wide range of topics regarding GOF disease mutations and their characterization by multi-omic networks. We highlight the fundamental function of GOF mutations and discuss the potential mechanistic effects in the context of signaling networks. We also discuss advances in bioinformatic and computational resources, which will dramatically help with studies on the functional and phenotypic consequences of GOF mutations.


Assuntos
Multiômica , Medicina de Precisão , Estudo de Associação Genômica Ampla , Mutação , Mutação com Ganho de Função
10.
bioRxiv ; 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37066387

RESUMO

RNA isoforms influence cell identity and function. Until recently, technological limitations prevented a genome-wide appraisal of isoform influence on cell identity in various parts of the brain. Using enhanced long-read single-cell isoform sequencing, we comprehensively analyze RNA isoforms in multiple mouse brain regions, cell subtypes, and developmental timepoints from postnatal day 14 (P14) to adult (P56). For 75% of genes, full-length isoform expression varies along one or more axes of phenotypic origin, underscoring the pervasiveness of isoform regulation across multiple scales. As expected, splicing varies strongly between cell types. However, certain gene classes including neurotransmitter release and reuptake as well as synapse turnover, harbor significant variability in the same cell type across anatomical regions, suggesting differences in network activity may influence cell-type identity. Glial brain-region specificity in isoform expression includes strong poly(A)-site regulation, whereas neurons have stronger TSS regulation. Furthermore, developmental patterns of cell-type specific splicing are especially pronounced in the murine adolescent transition from P21 to P28. The same cell type traced across development shows more isoform variability than across adult anatomical regions, indicating a coordinated modulation of functional programs dictating neural development. As most cell-type specific exons in P56 mouse hippocampus behave similarly in newly generated data from human hippocampi, these principles may be extrapolated to human brain. However, human brains have evolved additional cell-type specificity in splicing, suggesting gain-of-function isoforms. Taken together, we present a detailed single-cell atlas of full-length brain isoform regulation across development and anatomical regions, providing a previously unappreciated degree of isoform variability across multiple scales of the brain.

11.
Genome Biol ; 24(1): 91, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095564

RESUMO

Long-read RNA sequencing (lrRNA-seq) produces detailed information about full-length transcripts, including novel and sample-specific isoforms. Furthermore, there is an opportunity to call variants directly from lrRNA-seq data. However, most state-of-the-art variant callers have been developed for genomic DNA. Here, there are two objectives: first, we perform a mini-benchmark on GATK, DeepVariant, Clair3, and NanoCaller primarily on PacBio Iso-Seq, data, but also on Nanopore and Illumina RNA-seq data; second, we propose a pipeline to process spliced-alignment files, making them suitable for variant calling with DNA-based callers. With such manipulations, high calling performance can be achieved using DeepVariant on Iso-seq data.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , RNA , Análise de Sequência de RNA , RNA-Seq , Sequenciamento do Exoma
12.
bioRxiv ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993769

RESUMO

A major fraction of loci identified by genome-wide association studies (GWASs) lead to alterations in alternative splicing, but interpretation of how such alterations impact proteins is hindered by the technical limitations of short-read RNA-seq, which cannot directly link splicing events to full-length transcript or protein isoforms. Long-read RNA-seq represents a powerful tool to define and quantify transcript isoforms, and recently, infer protein isoform existence. Here we present a novel approach that integrates information from GWAS, splicing QTL (sQTL), and PacBio long-read RNA-seq in a disease-relevant model to infer the effects of sQTLs on the ultimate protein isoform products they encode. We demonstrate the utility of our approach using bone mineral density (BMD) GWAS data. We identified 1,863 sQTLs from the Genotype-Tissue Expression (GTEx) project in 732 protein-coding genes which colocalized with BMD associations (H 4 PP ≥ 0.75). We generated deep coverage PacBio long-read RNA-seq data (N=∼22 million full-length reads) on human osteoblasts, identifying 68,326 protein-coding isoforms, of which 17,375 (25%) were novel. By casting the colocalized sQTLs directly onto protein isoforms, we connected 809 sQTLs to 2,029 protein isoforms from 441 genes expressed in osteoblasts. Using these data, we created one of the first proteome-scale resources defining full-length isoforms impacted by colocalized sQTLs. Overall, we found that 74 sQTLs influenced isoforms likely impacted by nonsense mediated decay (NMD) and 190 that potentially resulted in the expression of new protein isoforms. Finally, we identified colocalizing sQTLs in TPM2 for splice junctions between two mutually exclusive exons, and two different transcript termination sites, making it impossible to interpret without long-read RNA-seq data. siRNA mediated knockdown in osteoblasts showed two TPM2 isoforms with opposing effects on mineralization. We expect our approach to be widely generalizable across diverse clinical traits and accelerate system-scale analyses of protein isoform activities modulated by GWAS loci.

13.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36752347

RESUMO

Alzheimer's disease (AD) is one of the most challenging neurodegenerative diseases because of its complicated and progressive mechanisms, and multiple risk factors. Increasing research evidence demonstrates that genetics may be a key factor responsible for the occurrence of the disease. Although previous reports identified quite a few AD-associated genes, they were mostly limited owing to patient sample size and selection bias. There is a lack of comprehensive research aimed to identify AD-associated risk mutations systematically. To address this challenge, we hereby construct a large-scale AD mutation and co-mutation framework ('AD-Syn-Net'), and propose deep learning models named Deep-SMCI and Deep-CMCI configured with fully connected layers that are capable of predicting cognitive impairment of subjects effectively based on genetic mutation and co-mutation profiles. Next, we apply the customized frameworks to data sets to evaluate the importance scores of the mutations and identified mutation effectors and co-mutation combination vulnerabilities contributing to cognitive impairment. Furthermore, we evaluate the influence of mutation pairs on the network architecture to dissect the genetic organization of AD and identify novel co-mutations that could be responsible for dementia, laying a solid foundation for proposing future targeted therapy for AD precision medicine. Our deep learning model codes are available open access here: https://github.com/Pan-Bio/AD-mutation-effectors.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Aprendizado Profundo , Humanos , Doença de Alzheimer/genética , Imageamento por Ressonância Magnética , Disfunção Cognitiva/genética , Mutação
14.
Circ Res ; 132(3): 323-338, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36597873

RESUMO

BACKGROUND: Coronary artery disease (CAD) is the leading cause of death worldwide. Recent meta-analyses of genome-wide association studies have identified over 175 loci associated with CAD. The majority of these loci are in noncoding regions and are predicted to regulate gene expression. Given that vascular smooth muscle cells (SMCs) play critical roles in the development and progression of CAD, we aimed to identify the subset of the CAD loci associated with the regulation of transcription in distinct SMC phenotypes. METHODS: We measured gene expression in SMCs isolated from the ascending aortas of 151 heart transplant donors of various genetic ancestries in quiescent or proliferative conditions and calculated the association of their expression and splicing with ~6.3 million imputed single-nucleotide polymorphism markers across the genome. RESULTS: We identified 4910 expression and 4412 splicing quantitative trait loci (sQTLs) representing regions of the genome associated with transcript abundance and splicing. A total of 3660 expression quantitative trait loci (eQTLs) had not been observed in the publicly available Genotype-Tissue Expression dataset. Further, 29 and 880 eQTLs were SMC-specific and sex-biased, respectively. We made these results available for public query on a user-friendly website. To identify the effector transcript(s) regulated by CAD loci, we used 4 distinct colocalization approaches. We identified 84 eQTL and 164 sQTL that colocalized with CAD loci, highlighting the importance of genetic regulation of mRNA splicing as a molecular mechanism for CAD genetic risk. Notably, 20% and 35% of the eQTLs were unique to quiescent or proliferative SMCs, respectively. One CAD locus colocalized with a sex-specific eQTL (TERF2IP), and another locus colocalized with SMC-specific eQTL (ALKBH8). The most significantly associated CAD locus, 9p21, was an sQTL for the long noncoding RNA CDKN2B-AS1, also known as ANRIL, in proliferative SMCs. CONCLUSIONS: Collectively, our results provide evidence for the molecular mechanisms of genetic susceptibility to CAD in distinct SMC phenotypes.


Assuntos
Doença da Artéria Coronariana , Masculino , Feminino , Humanos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Estudo de Associação Genômica Ampla/métodos , Regulação da Expressão Gênica , Locos de Características Quantitativas , Predisposição Genética para Doença , Expressão Gênica , Polimorfismo de Nucleotídeo Único , Homólogo AlkB 8 da RNAt Metiltransferase/genética , Homólogo AlkB 8 da RNAt Metiltransferase/metabolismo
15.
Curr Stem Cell Rep ; 9(2): 31-41, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38939410

RESUMO

Purpose of review: The underlying molecular mechanisms that direct stem cell differentiation into fully functional, mature cells remain an area of ongoing investigation. Cell state is the product of the combinatorial effect of individual factors operating within a coordinated regulatory network. Here, we discuss the contribution of both gene regulatory and splicing regulatory networks in defining stem cell fate during differentiation and the critical role of protein isoforms in this process. Recent findings: We review recent experimental and computational approaches that characterize gene regulatory networks, splice regulatory networks, and the resulting transcriptome and proteome they mediate during differentiation. Such approaches include long-read RNA sequencing, which has demonstrated high-resolution profiling of mRNA isoforms, and Cas13-based CRISPR, which could make possible high-throughput isoform screening. Collectively, these developments enable systems-level profiling of factors contributing to cell state. Summary: Overall, gene and splice regulatory networks are important in defining cell state. The emerging high-throughput systems-level approaches will characterize the gene regulatory network components necessary in driving stem cell differentiation.

16.
RNA Biol ; 19(1): 1228-1243, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457147

RESUMO

Endothelial cells (ECs) comprise the lumenal lining of all blood vessels and are critical for the functioning of the cardiovascular system. Their phenotypes can be modulated by alternative splicing of RNA to produce distinct protein isoforms. To characterize the RNA and protein isoform landscape within ECs, we applied a long read proteogenomics approach to analyse human umbilical vein endothelial cells (HUVECs). Transcripts delineated from PacBio sequencing serve as the basis for a sample-specific protein database used for downstream mass-spectrometry (MS) analysis to infer protein isoform expression. We detected 53,863 transcript isoforms from 10,426 genes, with 22,195 of those transcripts being novel. Furthermore, the predominant isoform in HUVECs does not correspond with the accepted "reference isoform" 25% of the time, with vascular pathway-related genes among this group. We found 2,597 protein isoforms supported through unique peptides, with an additional 2,280 isoforms nominated upon incorporation of long-read transcript evidence. We characterized a novel alternative acceptor for endothelial-related gene CDH5, suggesting potential changes in its associated signalling pathways. Finally, we identified novel protein isoforms arising from a diversity of RNA splicing mechanisms supported by uniquely mapped novel peptides. Our results represent a high-resolution atlas of known and novel isoforms of potential relevance to endothelial phenotypes and function.[Figure: see text].


Assuntos
Proteogenômica , Humanos , Células Endoteliais da Veia Umbilical Humana , Isoformas de Proteínas/genética , Processamento Alternativo , RNA
17.
Nat Commun ; 13(1): 5891, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202789

RESUMO

During blood vessel development, endothelial cells become specified toward arterial or venous fates to generate a circulatory network that provides nutrients and oxygen to, and removes metabolic waste from, all tissues. Arterial-venous specification occurs in conjunction with suppression of endothelial cell cycle progression; however, the mechanistic role of cell cycle state is unknown. Herein, using Cdh5-CreERT2;R26FUCCI2aR reporter mice, we find that venous endothelial cells are enriched for the FUCCI-Negative state (early G1) and BMP signaling, while arterial endothelial cells are enriched for the FUCCI-Red state (late G1) and TGF-ß signaling. Furthermore, early G1 state is essential for BMP4-induced venous gene expression, whereas late G1 state is essential for TGF-ß1-induced arterial gene expression. Pharmacologically induced cell cycle arrest prevents arterial-venous specification defects in mice with endothelial hyperproliferation. Collectively, our results show that distinct endothelial cell cycle states provide distinct windows of opportunity for the molecular induction of arterial vs. venous fate.


Assuntos
Células Endoteliais , Fator de Crescimento Transformador beta1 , Animais , Artérias/metabolismo , Ciclo Celular , Células Endoteliais/metabolismo , Camundongos , Oxigênio/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Veias
18.
Hum Mol Genet ; 31(R1): R123-R136, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-35960994

RESUMO

Aberrant splicing underlies many human diseases, including cancer, cardiovascular diseases and neurological disorders. Genome-wide mapping of splicing quantitative trait loci (sQTLs) has shown that genetic regulation of alternative splicing is widespread. However, identification of the corresponding isoform or protein products associated with disease-associated sQTLs is challenging with short-read RNA-seq, which cannot precisely characterize full-length transcript isoforms. Furthermore, contemporary sQTL interpretation often relies on reference transcript annotations, which are incomplete. Solutions to these issues may be found through integration of newly emerging long-read sequencing technologies. Long-read sequencing offers the capability to sequence full-length mRNA transcripts and, in some cases, to link sQTLs to transcript isoforms containing disease-relevant protein alterations. Here, we provide an overview of sQTL mapping approaches, the use of long-read sequencing to characterize sQTL effects on isoforms, the linkage of RNA isoforms to protein-level functions and comment on future directions in the field. Based on recent progress, long-read RNA sequencing promises to be part of the human disease genetics toolkit to discover and treat protein isoforms causing rare and complex diseases.


Assuntos
Genética Humana , Isoformas de RNA , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de RNA/genética , RNA Mensageiro/genética , Análise de Sequência de RNA
19.
Database (Oxford) ; 20222022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961013

RESUMO

Over the last 25 years, biology has entered the genomic era and is becoming a science of 'big data'. Most interpretations of genomic analyses rely on accurate functional annotations of the proteins encoded by more than 500 000 genomes sequenced to date. By different estimates, only half the predicted sequenced proteins carry an accurate functional annotation, and this percentage varies drastically between different organismal lineages. Such a large gap in knowledge hampers all aspects of biological enterprise and, thereby, is standing in the way of genomic biology reaching its full potential. A brainstorming meeting to address this issue funded by the National Science Foundation was held during 3-4 February 2022. Bringing together data scientists, biocurators, computational biologists and experimentalists within the same venue allowed for a comprehensive assessment of the current state of functional annotations of protein families. Further, major issues that were obstructing the field were identified and discussed, which ultimately allowed for the proposal of solutions on how to move forward.


Assuntos
Genômica , Proteínas , Sequência de Bases , Biologia Computacional , Genoma , Anotação de Sequência Molecular
20.
Genome Biol ; 23(1): 69, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241129

RESUMO

BACKGROUND: The detection of physiologically relevant protein isoforms encoded by the human genome is critical to biomedicine. Mass spectrometry (MS)-based proteomics is the preeminent method for protein detection, but isoform-resolved proteomic analysis relies on accurate reference databases that match the sample; neither a subset nor a superset database is ideal. Long-read RNA sequencing (e.g., PacBio or Oxford Nanopore) provides full-length transcripts which can be used to predict full-length protein isoforms. RESULTS: We describe here a long-read proteogenomics approach for integrating sample-matched long-read RNA-seq and MS-based proteomics data to enhance isoform characterization. We introduce a classification scheme for protein isoforms, discover novel protein isoforms, and present the first protein inference algorithm for the direct incorporation of long-read transcriptome data to enable detection of protein isoforms previously intractable to MS-based detection. We have released an open-source Nextflow pipeline that integrates long-read sequencing in a proteomic workflow for isoform-resolved analysis. CONCLUSIONS: Our work suggests that the incorporation of long-read sequencing and proteomic data can facilitate improved characterization of human protein isoform diversity. Our first-generation pipeline provides a strong foundation for future development of long-read proteogenomics and its adoption for both basic and translational research.


Assuntos
Proteogenômica , Processamento Alternativo , Humanos , Isoformas de Proteínas/genética , Proteômica , Análise de Sequência de RNA/métodos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA