Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853337

RESUMO

Wheat (Triticum aestivum L.) is one of the most important crops worldwide. Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is a destructive disease threatening wheat yield and quality. The utilization of resistant genes and cultivars is considered the most economical, environmentally-friendly, and effective method to control powdery mildew. Wheat breeding line Jingzi 102 was highly resistant to powdery mildew at both seedling and adult plant stages. Genetic analysis of F1, F2, and F2:3 populations of "Jingzi 102 × Shixin 828" showed that the resistance of Jingzi 102 against powdery mildew isolate E09 at the seedling stage was controlled by a single dominant gene, temporarily designated PmJZ. Using bulked segregant RNA-Seq combined with molecular markers analysis, PmJZ was located on the long arm of chromosome 2B and flanked by markers BJK695-1 and CIT02g-20 with the genetic distances of 1.2 and 0.5 cM, respectively, corresponding to the bread wheat genome of Chinese Spring (IWGSC RefSeq v2.1) 703.8-707.6 Mb. PmJZ is most likely different from the documented Pm genes on chromosome 2BL based on their physical positions, molecular markers analysis, and resistance spectrum. Based on the gene annotation information, five genes related to disease resistance could be considered as the candidate genes of PmJZ. To accelerate the application of PmJZ, the flanking markers BJK695-1 and CIT02g-20 can serve for marker-assisted selection of PmJZ in wheat disease resistance breeding.

2.
JCI Insight ; 9(13)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781030

RESUMO

Acute pancreatitis (AP) is among the most common hospital gastrointestinal diagnoses; understanding the mechanisms underlying the severity of AP is critical for development of new treatment options for this disease. Here, we evaluate the biological function of phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) in AP pathogenesis in 2 independent genetically engineered mouse models of AP. PFKFB3 was elevated in AP and severe AP (SAP), and KO of Pfkfb3 abrogated the severity of alcoholic SAP (FAEE-SAP). Using a combination of genetic, pharmacological, and molecular studies, we defined the interaction of PFKFB3 with inositol 1,4,5-trisphosphate receptor (IP3R) as a key event mediating this phenomenon. Further analysis demonstrated that the interaction between PFKFB3 and IP3R promotes FAEE-SAP severity by altering intracellular calcium homeostasis in acinar cells. Together, our results support a PFKFB3-driven mechanism controlling AP pathobiology and define this enzyme as a therapeutic target to ameliorate the severity of this condition.


Assuntos
Células Acinares , Cálcio , Receptores de Inositol 1,4,5-Trifosfato , Pancreatite , Fosfofrutoquinase-2 , Animais , Fosfofrutoquinase-2/metabolismo , Fosfofrutoquinase-2/genética , Camundongos , Pancreatite/metabolismo , Pancreatite/genética , Pancreatite/patologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Cálcio/metabolismo , Células Acinares/metabolismo , Células Acinares/patologia , Camundongos Knockout , Modelos Animais de Doenças , Índice de Gravidade de Doença , Masculino , Humanos , Sinalização do Cálcio/genética
3.
Free Radic Biol Med ; 210: 130-145, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984751

RESUMO

Acute pancreatitis (AP) is a non-infectious pancreatic enzyme-induced disorder, a life-threatening inflammatory condition that can cause multi-organ dysfunction, characterized by high morbidity and mortality. Several therapies have been employed to target this disorder; however, few happen to be effectively employable even in the early phase. PFKFB3(6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-3) is a critical regulator of glycolysis and is upregulated under inflammatory, mitogenic, and hypoxia conditions. Essential information on the targeting of the inflammatory pathway will present the termination of the disorder and recovery. Herein we investigated the protective function of KAN0438757, a potent inhibitor of PFKFB3, and its mechanism of impeding AP induced in mice. KAN0438757 was confirmed to activate the Nrf2/HO-1 inflammatory signaling pathways in response to caerulein induced acute pancreatitis (CAE-AP) and fatty acid ethyl ester induced severe acute pancreatitis (FAEE-SAP). Additionally, KAN0438757 alleviated the inflammatory process in infiltrated macrophage via the Nrf2/HO-1 inflammatory signaling pathway and demonstrated a significant effect on the growth of mice with induced AP. And more importantly, KAN0438757 displayed negligible toxicity in vivo. Taken together our data suggest KAN0438757 directly suppresses the inflammatory role of PFKFB3 and induces a protective role via the Nrf2/HO-1 pathway, which could prove as an excellent therapeutic platform for SAP amelioration.


Assuntos
Pancreatite , Camundongos , Animais , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Pancreatite/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Doença Aguda , Transdução de Sinais , Macrófagos/metabolismo
4.
Front Plant Sci ; 13: 853220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909776

RESUMO

Due to the rising concentration of atmospheric CO2, climate change is predicted to intensify episodes of drought. However, our understanding of how combined environmental conditions, such as elevated CO2 and drought together, will influence crop-insect interactions is limited. In the present study, the direct effects of combined elevated CO2 and drought stress on wheat (Triticum aestivum) nutritional quality and insect resistance, and the indirect effects on the grain aphid (Sitobion miscanthi) performance were investigated. The results showed that, in wheat, elevated CO2 alleviated low water content caused by drought stress. Both elevated CO2 and drought promoted soluble sugar accumulation. However, opposite effects were found on amino acid content-it was decreased by elevated CO2 and increased by drought. Further, elevated CO2 down-regulated the jasmonic acid (JA) -dependent defense, but up-regulated the salicylic acid (SA)-dependent defense. Meanwhile, drought enhanced abscisic acid accumulation that promoted the JA-dependent defense. For aphids, their feeding always induced phytohormone resistance in wheat under either elevated CO2 or drought conditions. Similar aphid performance between the control and the combined two factors were observed. We concluded that the aphid damage suffered by wheat in the future under combined elevated CO2 and drier conditions tends to maintain the status quo. We further revealed the mechanism by which it happened from the aspects of wheat water content, nutrition, and resistance to aphids.

5.
BMC Plant Biol ; 21(1): 354, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315414

RESUMO

BACKGROUND: Atractylodes chinensis (DC.) Koidz is a well-known medicinal plant containing the major bioactive compound, atractylodin, a sesquiterpenoid. High-performance liquid chromatography (HPLC) analysis demonstrated that atractylodin was most abundant in 3-year old A. chinensis rhizome, compared with those from 1- and 2-year old rhizomes, however, the molecular mechanisms underlying accumulation of atractylodin in rhizomes are poorly understood. RESULTS: In this study, we characterized the transcriptomes from rhizomes of 1-, 2- and 3-year old (Y1, Y2 and Y3, respectively) A. chinensis, to identify differentially expressed genes (DEGs). We identified 240, 169 and 131 unigenes encoding the enzyme genes in the mevalonate (MVA), methylerythritol phosphate (MEP), sesquiterpenoid and triterpenoid biosynthetic pathways, respectively. To confirm the reliability of the RNA sequencing analysis, eleven key gene encoding factors involved in the sesquiterpenoid and triterpenoid biosynthetic pathway, as well as in pigment, amino acid, hormone and transcription factor functions, were selected for quantitative real time PCR (qRT-PCR) analysis. The results demonstrated similar expression patterns to those determined by RNA sequencing, with a Pearson's correlation coefficient of 0.9 between qRT-PCR and RNA-seq data. Differential gene expression analysis of rhizomes from different ages revealed 52 genes related to sesquiterpenoid and triterpenoid biosynthesis. Among these, seven DEGs were identified in Y1 vs Y2, Y1 vs Y3 and Y2 vs Y3, of which five encoded four key enzymes, squalene/phytoene synthase (SS), squalene-hopene cyclase (SHC), squalene epoxidase (SE) and dammarenediol II synthase (DS). These four enzymes directly related to squalene biosynthesis and subsequent catalytic action. To validate the result of these seven DEGs, qRT-PCR was performed and indicated most of them displayed lower relative expression in 3-year old rhizome, similar to transcriptomic analysis. CONCLUSION: The enzymes SS, SHC, SE and DS down-regulated expression in 3-year old rhizome. This data corresponded to the higher content of sesquiterpenoid in 3-year old rhizome, and confirmed by qRT-PCR. The results of comparative transcriptome analysis and identified key enzyme genes laid a solid foundation for investigation of production sesquiterpenoid in A. chinensis.


Assuntos
Atractylodes/metabolismo , Perfilação da Expressão Gênica/métodos , Transcriptoma/genética , Alquil e Aril Transferases/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Transferases Intramoleculares/metabolismo , Análise de Sequência de RNA/métodos , Sesquiterpenos/metabolismo , Esqualeno Mono-Oxigenase/metabolismo
6.
Plant Dis ; 105(12): 3900-3908, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34129353

RESUMO

Powdery mildew and leaf rust, caused by Blumeria graminis f. sp. tritici and Puccinia triticina, respectively, are widespread diseases of wheat worldwide. The use of resistant cultivars is considered the most economical, environment-friendly, and effective method to control these diseases. In the present study, a collection of 2,978 wheat accessions consisting of 1,394 advanced breeding lines, 1,078 Chinese cultivars, 291 introduced cultivars, 132 lines containing alien chromosomes, and 83 landraces was tested for reactions to powdery mildew and leaf rust. The results indicated that 659 wheat accessions (22.1%) were highly resistant to a widely prevalent B. graminis f. sp. tritici isolate, E09, at the seedling stage, and 390 were consistently resistant to the mixture of B. graminis f. sp. tritici isolates at the adult plant stage. Meanwhile, 63 accessions (2.1%) were highly resistant to leaf rust at the adult plant stage, of which 54 were resistant to a predominant and highly virulent P. triticina race, THTT, at the seedling stage. Notably, 17 accessions were resistant to both powdery mildew and leaf rust. To detect known genes for resistance to powdery mildew and leaf rust, these accessions were tested with gene-specific or tightly linked markers for seven powdery mildew genes (Pm genes; Pm2, Pm4, Pm5, Pm6, Pm8, Pm21, and Pm24) and 10 Lr genes (Lr1, Lr9, Lr10, Lr19, Lr20, Lr24, Lr26, Lr34, Lr37, and Lr46). Of the 659 powdery mildew-resistant accessions, 328 might carry single Pm genes and 191 carry combined Pm genes. Pm2 was detected at the highest frequency of 59.6%, followed by Pm8, Pm6, Pm21, Pm4, and Pm5, whereas Pm24 was not detected. In addition, 139 accessions might contain unknown Pm genes different from those tested in this study. In the 63 accessions resistant to leaf rust, four leaf rust genes (Lr genes; Lr1, Lr10, Lr26, and Lr34) were detected in 41 accessions singly or in combination, whereas six genes (Lr9, Lr19, Lr20, Lr24, Lr37, and Lr46) were not detected. Twenty-two accessions might contain unknown Lr genes different from those tested in this study. This study not only provided important information for rationally distributing resistance genes in wheat breeding programs, but also identified resistant germplasm that might have novel genes to enrich the diversity of resistance sources.


Assuntos
Basidiomycota , Triticum , Genes de Plantas , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
7.
RSC Adv ; 11(57): 36089-36097, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-35492771

RESUMO

Nanopesticides with controlled release can achieve more effective utilization of pesticides. Here, to enhance the adsorption of pesticides onto the target organisms, the formulation of pesticides with temperature-responsive release was proposed by combing graphene oxide (GO) and existing pyrethroid pesticides (cyhalothrin, bifenthrin and fenpropathrin). Pesticides were loaded onto GO nanosheets as a carrier via a simple physisorption process, and the GO-pesticide nanocomposites exhibited temperature-responsive release and excellent storage stability, which are of vital importance to the practical application. Furthermore, we assessed the bioactivity of the GO-pesticide nanocomposites against spider mites (Tetranychus urticae Koch) indoors and in the field. As a result, GO-pesticide nanocomposites had many folds higher bioactivity than individual pesticides, and could be adsorbed on the cuticle of T. urticae and surface of bean leaves with highly uniform dispersibility. The easy preparation and higher bioactivity of GO-pesticide nanocomposites indicate their promising application potential in pest control and green agriculture.

8.
J Exp Bot ; 71(9): 2713-2722, 2020 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31943041

RESUMO

Plants are routinely subjected simultaneously to different abiotic and biotic stresses, such as heat, drought, and insect infestation. Plant-insect interactions in such complex stress situations are poorly understood. We evaluated the performance of the grain aphid (Sitobion avenae) in wheat (Triticum aestivum L.) exposed to a combination of heat and drought stresses. We also performed assays of the relative water content, nutritional quality, and responses of phytohormone signaling pathways. Lower relative water content and accumulation of soluble sugars and amino acids were observed in plants exposed to combined heat and drought stress. These conditions increased abscisic acid levels in the absence of aphids, as well as leading to higher levels of jasmonate-dependent transcripts. The grain aphid infestation further increased abscisic acid levels and the abundance of jasmonic acid- and salicylic acid-dependent defenses under the combined stress conditions. Aphids reared on plants grown under drought stress alone showed lower net reproductive rates, intrinsic rates of increase, and finite rates of increase compared with aphids reared on plants in the absence of stress. The heat-treated plants also showed a decreased aphid net reproductive rate. These findings demonstrate that exposure to a combination of stresses enhances plant defense responses against aphids as well as altering nutritional quality.


Assuntos
Afídeos , Animais , Secas , Fertilidade , Temperatura Alta , Triticum
9.
Wei Sheng Wu Xue Bao ; 54(8): 926-35, 2014 Aug 04.
Artigo em Chinês | MEDLINE | ID: mdl-25345025

RESUMO

OBJECTIVE: The aim of this study was to investigate endophytic bacterial diversity of wild soybean varieties with different resistance to soybean cyst nematode(Heterodera glycines) , for deciphering the interactions of soybean cyst nematode with endophytic bacteria. METHODS: After screening wild soybean varieties against race 3 of H. glycines, we investigated endophytic bacterial diversity in root tissues of wild soybean varieties with different resistance to H. glycines using 16S rDNA cloning library and amplified ribosomal DNA restriction analysis. RESULTS: Endophytic bacteria of wild soybean root belonged to 6 bacterial groups, the clones belonging to group Proteobacteria and Firmicutes were the endophyte dominants in wild soybean with 46.8% and 13.6% of total clones, respectively. Actinobacteria, Bacteroidetes, Acidobacteria, Deincoccus-Thermus and Archaea were less represented. 18.8% of clone sequences were similar to those of uncultured bacteria in the environment. The bacterial diversity was higher in H. glycines-Resistant than -Susceptible wild soybean varieties, and the dominant group was different between H. glycines-Resistant and -Susceptible wild soybean varieties. Mesorhizobium tamadayense, Enterobacter ludwigii and Bacillus megaterium were the main bacterial groups in special operational taxonomic units (OTUs) of H. glycines-Resistant wild soybean variety. CONCLUSIONS: By 16S rDNA cloning library and amplified ribosomal DNA restriction analysis, the diversity of dominant group of endophytic bacteria in root tissues has difference among H. glycines-Resistant and -Susceptible wild soybean varieties.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Endófitos/isolamento & purificação , Glycine max/parasitologia , Doenças das Plantas/parasitologia , Tylenchoidea/fisiologia , Animais , Bactérias/classificação , Bactérias/genética , Endófitos/classificação , Endófitos/genética , Dados de Sequência Molecular , Glycine max/microbiologia
10.
J Nematol ; 45(3): 228-35, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24115788

RESUMO

The soybean cyst nematode (SCN), Heterodera glycines, can cause significant reductions in soybean yield and quality in many parts of the world. Natural biological control may play an important role in regulating SCN population. In this study the bacterial communities associated with SCN cysts obtained from fields under different lengths of soybean monoculture were explored. Soil samples were collected in 2010 and 2011 from six fields that had been used for soybean monoculture for 2 to 41 yr. SCN population densities were determined and bacterial communities from SCN cysts were investigated by Biolog and PCR-DGGE methods. SCN population densities initially increased in the first 5 yr of soybean monoculture but then declined steeply as years of soybean monoculture increased. Catabolic diversity of bacterial communities associated with cysts tended to decline as number of years of monoculture increased. Some specific PCR-DGGE bands, mainly representing Streptomyces and Rhizobium, were obtained from the cysts collected from the long-term monoculture fields. Principal component analysis of Biolog and PCR-DGGE data revealed that bacterial communities associated with cysts could be divided into two groups: those from cysts obtained from shorter (< 8 yr) vs. longer (> 8 yr) monoculture. This research demonstrates that the composition of the bacterial communities obtained from SCN cysts changes with length of soybean monoculture; the suppressive impact of these bacterial communities to SCN is yet to be determined.

11.
Wei Sheng Wu Xue Bao ; 52(7): 902-9, 2012 Jul 04.
Artigo em Chinês | MEDLINE | ID: mdl-23115975

RESUMO

OBJECTIVE: To understand the bacterial diversity isolated from the cysts of Heterodera glycines in the soybean field in Heilongjiang Province. METHODS: Bacteria were isolated from cysts on nutrient agar plates using dilution plate method and further identified by phylogenetic analysis based on 16S rDNA gene sequences. RESULTS: Totally 90 bacteria strains with different colony morphology were selected on nutrient agar plate and their phylogenetic features were analyzed based on the partial 16S rDNA sequences. In total 7 genera and 22 species were identified, including 46 strains in Gammaproteobacteria (51.1%), 32 in Firmicutes (35.6%), 10 in Betaproteobacteria (11.1%), and 2 in Alphaproteobacteria (2.2%). The dominant bacteria species were Pseudomonas and Bacillus. CONCLUSION: There was abundant species diversity of bacteria isolated from cysts Heterodera glycines in Heilongjiang, and these bacteria may play a physical and ecological roles in nematodes.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Tylenchoidea/microbiologia , Animais , Bactérias/genética , China , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA