Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(47): 18856-18866, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37191694

RESUMO

Ozone is commonly used as a predisinfectant in potable water reuse treatment trains. Nitromethane was recently found as a ubiquitous ozone byproduct in wastewater, and the key intermediate toward chloropicrin during subsequent secondary disinfection of ozonated wastewater effluent with chlorine. However, many utilities have switched from free chlorine to chloramines as a secondary disinfectant. The reaction mechanism and kinetics of nitromethane transformation by chloramines, unlike those for free chlorine, are unknown. In this work, the kinetics, mechanism, and products of nitromethane chloramination were studied. The expected principal product was chloropicrin, because chloramines are commonly assumed to react similarly to, although more slowly than, free chlorine. Different molar yields of chloropicrin were observed under acidic, neutral, and basic conditions, and surprisingly, transformation products other than chloropicrin were found. Monochloronitromethane and dichloronitromethane were detected at basic pH, and the mass balance was initially poor at neutral pH. Much of the missing mass was later attributed to nitrate formation, from a newly identified pathway involving monochloramine reacting as a nucleophile rather than a halogenating agent, through a presumed SN2 mechanism. The study indicates that nitromethane chloramination, unlike chlorination, is likely to produce a range of products, whose speciation is a function of pH and reaction time.


Assuntos
Desinfetantes , Ozônio , Poluentes Químicos da Água , Purificação da Água , Cloraminas , Cloro , Halogenação , Águas Residuárias , Desinfecção
2.
Environ Sci Technol ; 57(14): 5852-5860, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36976858

RESUMO

Chlorine reactions with peptide-bound amino acids form disinfection byproducts and contribute to pathogen inactivation by degrading protein structure and function. Peptide-bound lysine and arginine are two of the seven chlorine-reactive amino acids, but their reactions with chlorine are poorly characterized. Using N-acetylated lysine and arginine as models for peptide-bound amino acids and authentic small peptides, this study demonstrated conversion of the lysine side chain to mono- and dichloramines and the arginine side chain to mono-, di-, and trichloramines in ≤0.5 h. The lysine chloramines formed lysine nitrile and lysine aldehyde at ∼6% yield over ∼1 week. The arginine chloramines formed ornithine nitrile at ∼3% yield over ∼1 week but not the corresponding aldehyde. While researchers hypothesized that the protein aggregation observed during chlorination arises from covalent Schiff base cross-links between lysine aldehyde and lysine on different proteins, no evidence for Schiff base formation was observed. The rapid formation of chloramines and their slow decay indicate that they are more relevant than the aldehydes and nitriles to byproduct formation and pathogen inactivation over timescales relevant to drinking water distribution. Previous research has indicated that lysine chloramines are cytotoxic and genotoxic to human cells. The conversion of lysine and arginine cationic side chains to neutral chloramines should alter protein structure and function and enhance protein aggregation by hydrophobic interactions, contributing to pathogen inactivation.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Cloraminas/química , Lisina , Halogenação , Arginina , Cloro/química , Agregados Proteicos , Bases de Schiff , Desinfecção , Aminoácidos/química , Peptídeos , Aldeídos , Nitrilas , Poluentes Químicos da Água/química
3.
Water Res ; 213: 118053, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35196612

RESUMO

Ozonation has been applied in water treatment for more than a century, first for disinfection, later for oxidation of inorganic and organic pollutants. In recent years, ozone has been increasingly applied for enhanced municipal wastewater treatment for ecosystem protection and for potable water reuse. These applications triggered significant research efforts on the abatement efficiency of organic contaminants and the ensuing formation of transformation products. This endeavor was accompanied by developments in analytical and computational chemistry, which allowed to improve the mechanistic understanding of ozone reactions. This critical review assesses the challenges of ozonation of impaired water qualities such as wastewaters and provides an up-to-date compilation of the recent kinetic and mechanistic findings of ozone reactions with dissolved organic matter, various functional groups (olefins, aromatic compounds, heterocyclic compounds, aliphatic nitrogen-containing compounds, sulfur-containing compounds, hydrocarbons, carbanions, ß-diketones) and antibiotic resistance genes.

4.
Environ Sci Technol ; 55(9): 6281-6289, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33881830

RESUMO

Ozonation is widely used in wastewater reclamation treatment trains, either for micropollutant control or as a disinfectant and preoxidant in certain reuse processes. We recently found that ozonation of secondary effluent produces nitromethane, which can be efficiently transformed to genotoxic halonitromethanes by chlorination. In this work, the fate of nitromethane through water reuse treatment trains was characterized by analyzing samples from five reuse operations employing ozone. Nitromethane was poorly (<50%) rejected by reserve osmosis (RO), not removed by, and in some cases, increased by ultraviolet/advanced oxidation processes (UV/AOP). Sufficient nitromethane remained after advanced treatment that when chlorine was added to mimic secondary disinfection, halonitromethane formation was consistently observed. In contrast, biological activated carbon removed most (>75%) nitromethane. Bench-scale experiments were conducted to verify low removal by RO in clean systems and with wastewater effluent and to quantify the kinetics of direct and indirect photolysis of nitromethane in UV/AOP. An explanation for increasing nitromethane concentration during AOP is proposed. These results indicate that nitromethane presents a unique hazard to direct potable reuse systems, due to its ubiquitous formation during wastewater ozonation, poor removal by RO and UV/AOP, and facile conversion into genotoxic halonitromethanes upon chlorine addition.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Metano/análogos & derivados , Nitroparafinas , Águas Residuárias , Água
5.
Environ Sci Technol ; 54(4): 2182-2191, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32020793

RESUMO

Potable reuse of wastewater is expanding, and ozonation for water reuse is becoming more common, either as a preoxidant before membranes or as part of ozone/biological activated carbon (O3/BAC) systems. However, previous research has demonstrated that ozone drastically increases the formation potential of genotoxic halonitromethanes (HNMs), including during O3/BAC. Chloropicrin, the most common HNM, is synthesized by chlorinating nitromethane, suggesting that nitromethane may be the immediate precursor of chloropicrin, although nitromethane is unlikely to occur naturally in wastewater. We hypothesized that wastewater ozonation forms nitromethane, which would be the key intermediate toward HNMs. Ozonation of wastewater effluent was shown to form abundant nitromethane, which explained the majority (in one case, all) of subsequent chloropicrin formation. Next, we investigated a suspected category of nitromethane precursor: stimulant drugs, such as ephedrine and methamphetamine, and certain antidepressants. These drugs all feature N-methylamine functional groups, and certain N-alkylamines have been shown to produce primary nitroalkanes upon ozonation. Ozonation of N-methylamine drugs ubiquitously formed nitromethane, typically at >50% yield. Subsequent chlorination converted nitromethane to chloropicrin. The reaction mechanism was investigated to understand the variation in nitromethane yield between different precursors. These results suggest that nitromethane fate during reuse and nitromethane control should be investigated.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Metano/análogos & derivados , Metilaminas , Nitroparafinas , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA