Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Genom ; 4(10): 100655, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39303708

RESUMO

The emergence of perturbation transcriptomics provides a new perspective for drug discovery, but existing analysis methods suffer from inadequate performance and limited applicability. In this work, we present PertKGE, a method designed to deconvolute compound-protein interactions from perturbation transcriptomics with knowledge graph embedding. By considering multi-level regulatory events within biological systems that share the same semantic context, PertKGE significantly improves deconvoluting accuracy in two critical "cold-start" settings: inferring targets for new compounds and conducting virtual screening for new targets. We further demonstrate the pivotal role of incorporating multi-level regulatory events in alleviating representational biases. Notably, it enables the identification of ectonucleotide pyrophosphatase/phosphodiesterase-1 as the target responsible for the unique anti-tumor immunotherapy effect of tankyrase inhibitor K-756 and the discovery of five novel hits targeting the emerging cancer therapeutic target aldehyde dehydrogenase 1B1 with a remarkable hit rate of 10.2%. These findings highlight the potential of PertKGE to accelerate drug discovery.


Assuntos
Transcriptoma , Humanos , Tanquirases/metabolismo , Tanquirases/antagonistas & inibidores , Tanquirases/genética , Descoberta de Drogas/métodos , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/genética , Perfilação da Expressão Gênica/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
2.
Nat Commun ; 15(1): 5378, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918369

RESUMO

Artificial intelligence transforms drug discovery, with phenotype-based approaches emerging as a promising alternative to target-based methods, overcoming limitations like lack of well-defined targets. While chemical-induced transcriptional profiles offer a comprehensive view of drug mechanisms, inherent noise often obscures the true signal, hindering their potential for meaningful insights. Here, we highlight the development of TranSiGen, a deep generative model employing self-supervised representation learning. TranSiGen analyzes basal cell gene expression and molecular structures to reconstruct chemical-induced transcriptional profiles with high accuracy. By capturing both cellular and compound information, TranSiGen-derived representations demonstrate efficacy in diverse downstream tasks like ligand-based virtual screening, drug response prediction, and phenotype-based drug repurposing. Notably, in vitro validation of TranSiGen's application in pancreatic cancer drug discovery highlights its potential for identifying effective compounds. We envisage that integrating TranSiGen into the drug discovery and mechanism research holds significant promise for advancing biomedicine.


Assuntos
Aprendizado Profundo , Descoberta de Drogas , Fenótipo , Descoberta de Drogas/métodos , Humanos , Reposicionamento de Medicamentos/métodos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Transcriptoma , Perfilação da Expressão Gênica/métodos , Antineoplásicos/farmacologia , Inteligência Artificial
3.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38390990

RESUMO

Enhancing cancer treatment efficacy remains a significant challenge in human health. Immunotherapy has witnessed considerable success in recent years as a treatment for tumors. However, due to the heterogeneity of diseases, only a fraction of patients exhibit a positive response to immune checkpoint inhibitor (ICI) therapy. Various single-gene-based biomarkers and tumor mutational burden (TMB) have been proposed for predicting clinical responses to ICI; however, their predictive ability is limited. We propose the utilization of the Text Graph Convolutional Network (GCN) method to comprehensively assess the impact of multiple genes, aiming to improve the predictive capability for ICI response. We developed TG468, a Text GCN model framing drug response prediction as a text classification task. By combining natural language processing (NLP) and graph neural network techniques, TG468 effectively handles sparse and high-dimensional exome sequencing data. As a result, TG468 can distinguish survival time for patients who received ICI therapy and outperforms single gene biomarkers, TMB and some classical machine learning models. Additionally, TG468's prediction results facilitate the identification of immune status differences among specific patient types in the Cancer Genome Atlas dataset, providing a rationale for the model's predictions. Our approach represents a pioneering use of a GCN model to analyze exome data in patients undergoing ICI therapy and offers inspiration for future research using NLP technology to analyze exome sequencing data.


Assuntos
Inibidores de Checkpoint Imunológico , Imunoterapia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Exoma , Aprendizado de Máquina , Biomarcadores , Biomarcadores Tumorais/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA