Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med Image Anal ; 79: 102428, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35500498

RESUMO

A key factor for assessing the state of the heart after myocardial infarction (MI) is to measure whether the myocardium segment is viable after reperfusion or revascularization therapy. Delayed enhancement-MRI or DE-MRI, which is performed 10 min after injection of the contrast agent, provides high contrast between viable and nonviable myocardium and is therefore a method of choice to evaluate the extent of MI. To automatically assess myocardial status, the results of the EMIDEC challenge that focused on this task are presented in this paper. The challenge's main objectives were twofold. First, to evaluate if deep learning methods can distinguish between non-infarct and pathological exams, i.e. exams with or without hyperenhanced area. Second, to automatically calculate the extent of myocardial infarction. The publicly available database consists of 150 exams divided into 50 cases without any hyperenhanced area after injection of a contrast agent and 100 cases with myocardial infarction (and then with a hyperenhanced area on DE-MRI), whatever their inclusion in the cardiac emergency department. Along with MRI, clinical characteristics are also provided. The obtained results issued from several works show that the automatic classification of an exam is a reachable task (the best method providing an accuracy of 0.92), and the automatic segmentation of the myocardium is possible. However, the segmentation of the diseased area needs to be improved, mainly due to the small size of these areas and the lack of contrast with the surrounding structures.


Assuntos
Aprendizado Profundo , Infarto do Miocárdio , Meios de Contraste , Humanos , Imageamento por Ressonância Magnética/métodos , Infarto do Miocárdio/diagnóstico por imagem , Miocárdio/patologia
2.
Front Cardiovasc Med ; 9: 754609, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369326

RESUMO

This study proposes machine learning-based models to automatically evaluate the severity of myocardial infarction (MI) from physiological, clinical, and paraclinical features. Two types of machine learning models are investigated for the MI assessment: the classification models classify the presence of the infarct and the persistent microvascular obstruction (PMO), and the regression models quantify the Percentage of Infarcted Myocardium (PIM) of patients suspected of having an acute MI during their reception in the emergency department. The ground truth labels for these supervised models are derived from the corresponding Delayed Enhancement MRI (DE-MRI) exams and manual annotations of the myocardium and scar tissues. Experiments were conducted on 150 cases and evaluated with cross-validation. Results showed that for the MI (PMO inclusive) and the PMO (infarct exclusive), the best models obtained respectively a mean error of 0.056 and 0.012 for the quantification, and 88.67 and 77.33% for the classification accuracy of the state of the myocardium. The study of the features' importance also revealed that the troponin value had the strongest correlation to the severity of the MI among the 12 selected features. For the proposal's translational perspective, in cardiac emergencies, qualitative and quantitative analysis can be obtained prior to the achievement of MRI by relying only on conventional tests and patient features, thus, providing an objective reference for further treatment by physicians.

3.
Comput Med Imaging Graph ; 95: 102014, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864579

RESUMO

Delayed Enhancement cardiac MRI (DE-MRI) has become indispensable for the diagnosis of myocardial diseases. However, to quantify the disease severity, doctors need time to manually annotate the scar and myocardium. To address this issue, in this paper we propose an automatic myocardial infarction segmentation approach on the left ventricle from short-axis DE-MRI based on Convolutional Neural Networks (CNN). The objective is to segment myocardial infarction on short-axis DE-MRI images of the left ventricle acquired 10 min after the injection of a gadolinium-based contrast agent. The segmentation of the infarction area is realized in two stages: a first CNN model finds the contour of myocardium and a second CNN model segments the infarction. Compared to the manual intra-observer and inter-observer variations for the segmentation of myocardial infarction, and to the automatic segmentation with Gaussian Mixture Model, our proposal achieves satisfying segmentation results on our dataset of 904 DE-MRI slices.


Assuntos
Aprendizado Profundo , Infarto do Miocárdio , Ventrículos do Coração , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Infarto do Miocárdio/diagnóstico por imagem , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA