Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 53(8): 4020-4044, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38444346

RESUMO

The process of coordinating between the same or multiple types of cells to jointly execute various instructions in a controlled and carefully regulated environment is a very appealing field. In order to provide clearer insight into the role of cell-cell interactions and the cellular communication of this process in their local communities, several interdisciplinary approaches have been employed to enhance the core understanding of this phenomenon. DNA nanostructures have emerged in recent years as one of the most promising tools in exploring cell-cell communication and interactions due to their programmability and addressability. Herein, this review is dedicated to offering a new perspective on using DNA nanostructures to explore the progress of cell-cell communication. After briefly outlining the anchoring strategy of DNA nanostructures on cell membranes and the subsequent dynamic regulation of DNA nanostructures, this paper highlights the significant contribution of DNA nanostructures in monitoring cell-cell communication and regulating its interactions. Finally, we provide a quick overview of the current challenges and potential directions for the application of DNA nanostructures in cellular communication and interactions.


Assuntos
Comunicação Celular , DNA , Nanoestruturas , Nanoestruturas/química , DNA/química , Humanos , Animais , Membrana Celular/química , Membrana Celular/metabolismo
2.
Biomacromolecules ; 24(7): 3228-3236, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37319440

RESUMO

Receptor dimerization is an essential mechanism for the activation of most receptor tyrosine kinases by ligands. Thus, regulating the nanoscale spatial distribution of cell surface receptors is significant for studying both intracellular signaling pathways and cellular behavior. However, there are currently very limited methods for exploring the effects of modulating the spatial distribution of receptors on their function by using simple tools. Herein, we developed an aptamer-based double-stranded DNA bridge acting as "DNA nanobridge", which regulates receptor dimerization by changing the number of bases. On this basis, we confirmed that the different nanoscale arrangements of the receptor can influence receptor function and its downstream signals. Among them, the effect gradually changed from helping to activate to inhibiting as the length of DNA nanobridge increased. Hence, it can not only effectively inhibit receptor function and thus affect cellular behavior but also serve as a fine-tuning tool to get the desired signal activity. Our strategy is promising to provide insight into the action of receptors in cell biology from the perspective of spatial distribution.


Assuntos
Receptores de Superfície Celular , Transdução de Sinais , Dimerização , Receptores de Superfície Celular/metabolismo , Ligantes , DNA/genética , DNA/metabolismo
3.
ACS Sens ; 8(5): 1918-1928, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37130214

RESUMO

Benefiting from superior programmable performance and flexible design of DNA technologies, a variety of single-molecule RNA fluorescence imaging methodologies have been reported. However, the multiplexing capability is restricted owing to the spectral overlap of fluorophores. To overcome this limitation, some inspiring multiplex imaging strategies have been developed, but in practice, it remains challenging to achieve convenient and rapid imaging in live cells due to complex designs and additional pretreatments to increase cell permeability. Here, we report an activatable fluorescence-encoded nanoprobe (AFENP) strategy, through which fluorescence-encoded functional modules for qualitative analysis and activated nucleic acid assemblies functional modules for quantitative testing enable simple multiplexed RNA imaging in single live cells. As a proof of principle, by two distinguishable fluorophores (fluorescein and rhodamine B) and their seven distinctly differentiated intensity levels, self-assembled AFENP enables simplified and quick simultaneous in situ detection and imaging of seven types of targets in live single cells because the fluorescent quantitative signal is activated only in the presence of target avoiding the washing procedures and additional pretreatment to increase cell permeability is undesired. We expect that this practical single-cell analysis platform will be adopted for multiple gene expression analysis and imaging in live cells on account of its simplicity and multiplex capability.


Assuntos
DNA , RNA , Imagem Óptica , Corantes Fluorescentes/metabolismo , Fluoresceína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA