Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Angew Chem Int Ed Engl ; : e202417518, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39400947

RESUMO

Tumor progression is associated with tumor-cell softening. Improving the stiffness of the tumor cells can make them more vulnerable to lymphocyte-mediated attack. Tumor cell membranes typically exhibit higher cholesterol levels than normal cells, making tumor cells soft. Herein, we demonstrate a mechanical immune checkpoint inhibitor (MICI) formulated by cyclodextrin (CD) lipids and fusogenic lipids. Through fusing CD lipids into the tumor cell membrane using a fusogenic liposome formulation, the cholesterol in the plasma membrane is reduced due to the specific host-guest interactions between CD lipid and cholesterol. As a result, tumor cells are stiffened, and the activation of lymphocytes (including NK and cytotoxic effector T cells) is improved when contacting the stiffened tumor cells, characterized by robust degranulation and effector cytokine production. Notably, this treatment has negligible influence on the infiltration and proliferation of lymphocytes in tumor tissues, confirming that the enhanced antitumor efficacy should result from activating a specific number of lymphocytes caused by direct regulation of the tumor cell stiffness. The combination of MICIs and clinical immunotherapies enhances the lymphocyte-mediated antitumor effects in two tumor mouse models, including breast cancer and melanoma. Our research also reveals an unappreciated mechanical dimension to lymphocyte activation.

2.
Adv Healthc Mater ; : e2402659, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39388414

RESUMO

The World Health Organization has warned that without effective action, deaths from drug-resistant bacteria can exceed 10 million annually, making it the leading cause of death. Conventional antibiotics are becoming less effective due to rapid bacterial drug resistance and slowed new antibiotic development, necessitating new strategies. Recently, materials with catalytic/enzymatic properties, known as nanozymes, have been developed, inspired by natural enzymes essential for bacterial eradication. Unlike recent literature reviews that broadly cover nanozyme design and biomedical applications, this review focuses on the latest advancements in nanozymes for combating bacterial drug resistance, emphasizing their design, structural characteristics, applications in combination therapy, and future prospects. This approach aims to promote nanozyme development for combating bacterial drug resistance, especially towards clinical translation.

3.
Biomater Sci ; 12(22): 5742-5752, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39382287

RESUMO

PEGylation is a promising strategy for modulating the physicochemical properties and improving the therapeutic efficacy of protein drugs. However, the application of multi-PEGylation frequently results in diminished protein activity. A single low molecular weight PEG (5 kDa) modified at the amino terminus of the B chain preserves the biological activity of insulin and moderately improves its pharmacokinetics. Nonetheless, this modification offers limited protein stabilization. Furthermore, overdoses still carry the risk of hypoglycemia, posing challenges for the clinical application of PEGylated insulin. Here, we constructed multifunctional nanochaperones featuring phenylboronic acid (PBA) modified hydrophobic microdomains and nitrilotriacetic acid (NTA)-based coordination domains (PN-nChaps) for PEGylated insulin delivery. This delivery strategy effectively overcomes the limitations associated with PEGylation by enhancing the stability and reducing the immunogenicity of PEGylated insulin, while enabling glucose-responsive controlled release. PEGylated insulin with nanochaperone carrier demonstrates a prolonged half-life (t1/2 = 18.66 h), facilitates on-demand release, and minimizes the risk of hypoglycemia. This approach provides a safe and effective strategy for long-term glycemic management in diabetic patients.


Assuntos
Insulina , Polietilenoglicóis , Polietilenoglicóis/química , Insulina/administração & dosagem , Insulina/química , Insulina/farmacologia , Animais , Controle Glicêmico , Humanos , Portadores de Fármacos/química , Camundongos , Ácidos Borônicos/química , Ácidos Borônicos/administração & dosagem , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Glicemia/efeitos dos fármacos , Glicemia/análise , Nanopartículas/química , Nanopartículas/administração & dosagem , Interações Hidrofóbicas e Hidrofílicas , Masculino , Sistemas de Liberação de Medicamentos
4.
J Am Chem Soc ; 146(34): 24177-24187, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39140408

RESUMO

Despite significant progress achieved in artificial self-sorting in solution, operating self-sorting in the body remains a considerable challenge. Here, we report an in vivo self-sorting peptide system via an in situ assembly evolution for combined cancer therapy. The peptide E3C16-SS-EIY consists of two disulfide-connected segments, E3C16SH and SHEIY, capable of independent assembly into twisted or flat nanoribbons. While E3C16-SS-EIY assembles into nanorods, exposure to glutathione (GSH) leads to the conversion of the peptide into E3C16SH and SHEIY, thus promoting in situ evolution from the nanorods into self-sorted nanoribbons. Furthermore, incorporation of two ligand moieties targeting antiapoptotic protein XIAP and organellar endoplasmic reticulum (ER) into the self-sorted nanoribbons allows for simultaneous inhibition of XIAP and accumulation surrounding ER. This leads to the cytotoxicity toward the cancer cells with elevated GSH levels, through activating caspase-dependent apoptosis and inducing ER dysfunction. In vivo self-sorting of E3C16-SS-EIY decorated with ligand moieties is thoroughly validated by tissue studies. Tumor-bearing mouse experiments confirm the therapeutic efficacy of the self-sorted assemblies for inhibiting tumor growth, with excellent biosafety. Our findings demonstrate an efficient approach to develop in vivo self-sorting systems and thereby facilitating in situ formulation of biomedical agents.


Assuntos
Peptídeos , Humanos , Animais , Peptídeos/química , Peptídeos/farmacologia , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/antagonistas & inibidores , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Glutationa/química , Glutationa/metabolismo , Linhagem Celular Tumoral , Nanotubos/química
5.
Adv Mater ; 36(36): e2406156, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39022883

RESUMO

Polymyxins have been regarded as an efficient therapeutic against many life-threatening, multidrug resistant Gram-negative bacterial infections; however, the cytotoxicity and emergence of drug resistance associated with polymyxins have greatly hindered their clinical potential. Herein, the reaction-induced self-assembly (RISA) of polymyxins and natural aldehydes in aqueous solution is presented. The resulting assemblies effectively mask the positively charged nature of polymyxins, reducing their cytotoxicity. Moreover, the representative PMBA4 (composed of polymyxin B (PMB) and (E)-2-heptenal (A4)) assemblies demonstrate enhanced binding to Gram-negative bacterial outer membranes and exhibit multiple antimicrobial mechanisms, including increased membrane permeability, elevated bacterial metabolism, suppression of quorum sensing, reduced ATP synthesis, and potential reduction of bacterial drug resistance. Remarkably, PMBA4 assemblies reverse drug resistance in clinically isolated drug-resistant strains of Gram-negative bacteria, demonstrating exceptional efficacy in preventing and eradicating bacterial biofilms. PMBA4 assemblies efficiently eradicate Gram-negative bacterial biofilm infections in vivo and alleviate inflammatory response. This RISA strategy offers a practical and clinically applicable approach to minimize side effects, reverse drug resistance, and prevent the emergence of resistance associated with free polymyxins.


Assuntos
Antibacterianos , Biofilmes , Polimixinas , Polimixinas/farmacologia , Polimixinas/química , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Animais , Humanos , Bactérias Gram-Negativas/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Polimixina B/farmacologia , Polimixina B/química , Camundongos , Aldeídos/química , Aldeídos/farmacologia , Testes de Sensibilidade Microbiana , Percepção de Quorum/efeitos dos fármacos
6.
Mater Horiz ; 11(19): 4781-4790, 2024 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-39026466

RESUMO

The overuse of antibiotics has led to the rapid development of multi-drug resistant bacteria, making antibiotics increasingly ineffective against bacterial infections. Consequently, there is an urgent need to develop alternative strategies to combat multi-drug-resistant bacterial infections. In this study, gold nanoparticles modified with ellagic acid (EA-AuNPs) were prepared using a simple and mild one-pot hydrothermal process. EA-AuNPs demonstrated high bactericidal efficacy and broad-spectrum antimicrobial activities against clinical isolates of the antibiotic-resistant ESKAPE pathogens. Furthermore, EA-AuNPs effectively disperse biofilms of multi-drug-resistant bacteria. Additionally, EA-AuNPs mitigated inflammatory responses at the bacterial infection sites. The combined bactericidal and anti-inflammatory treatment with EA-AuNPs resulted in faster curing of peritonitis caused by Staphylococcus aureus in mice compared to treatment with free EA or gentamicin. Moreover, transcriptome analysis revealed that EA-AuNPs exhibited a multi-targeting mechanism, making resistance development in pathogens more challenging than traditional antibiotics that recognize specific cellular targets. Overall, EA-AuNPs emerged as a promising antimicrobial agent against multi-drug-resistant bacterial infections.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Ácido Elágico , Ouro , Nanopartículas Metálicas , Staphylococcus aureus , Ouro/farmacologia , Ouro/química , Nanopartículas Metálicas/uso terapêutico , Ácido Elágico/farmacologia , Ácido Elágico/uso terapêutico , Animais , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/administração & dosagem , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Peritonite/tratamento farmacológico , Peritonite/microbiologia
7.
Acta Biomater ; 181: 347-361, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38702010

RESUMO

Cascade-reaction containers generating reactive oxygen species (ROS) as an alternative for antibiotic-based strategies for bacterial infection control, require endogenous oxygen-sources and ROS-generation close to or preferably inside target bacteria. Here, this is achieved by cetyltrimethylammonium-chloride (CTAC) assisted in situ metabolic labeling and incorporation of mesoporous SiO2-nanoparticles, dual-loaded with glucose-oxidase and Fe3O4-nanoparticles as cascade-reaction containers, inside bacterial cell walls. First, azide-functionalized d-alanine (D-Ala-N3) was inserted in cell wall peptidoglycan layers of growing Gram-positive pathogens. In Gram-negatives, this could only be achieved after outer lipid-membrane permeabilization, using a low concentration of CTAC. Low concentrations of CTAC had no adverse effect on in vitro blood clotting or hemolysis nor on the health of mice when blood-injected. Next, dibenzocyclooctyne-polyethylene-glycol modified, SiO2-nanoparticles were in situ click-reacted with d-Ala-N3 in bacterial cell wall peptidoglycan layers. Herewith, a two-step cascade-reaction is facilitated inside bacteria, in which glucose-oxidase generates H2O2 at endogenously-available glucose concentrations, while subsequently Fe3O4-nanoparticles catalyze generation of •OH from the H2O2 generated. Generation of •OH inside bacterial cell walls by dual-loaded mesoporous SiO2-nanoparticles yielded more effective in vitro killing of both planktonic Gram-positive and Gram-negative bacteria suspended in 10 % plasma than SiO2-nanoparticles solely loaded with glucose-oxidase. Gram-positive or Gram-negative bacterially induced sepsis in mice could be effectively treated by in situ pre-treatment with tail-vein injected CTAC and d-Ala-N3, followed by injection of dual-loaded cascade-reaction containers without using antibiotics. This makes in situ metabolic incorporation of cascade-reaction containers as described attractive for further investigation with respect to the control of other types of infections comprising planktonic bacteria. STATEMENT OF SIGNIFICANCE: In situ metabolic-incorporation of cascade-reaction-containers loaded with glucose-oxidase and Fe3O4 nanoparticles into bacterial cell-wall peptidoglycan is described, yielding ROS-generation from endogenous glucose, non-antibiotically killing bacteria before ROS inactivates. Hitherto, only Gram-positives could be metabolically-labeled, because Gram-negatives possess two lipid-membranes. The outer membrane impedes direct access to the peptidoglycan. This problem was solved by outer-membrane permeabilization using a quaternary-ammonium compound. Several studies on metabolic-labeling perform crucial labeling steps during bacterial-culturing that in real-life should be part of a treatment. In situ metabolic-incorporation as described, can be applied in well-plates during in vitro experiments or in the body as during in vivo animal experiments. Surprisingly, metabolic-incorporation proceeded unhampered in blood and a murine, bacterially-induced sepsis could be well treated.


Assuntos
Peptidoglicano , Espécies Reativas de Oxigênio , Sepse , Animais , Espécies Reativas de Oxigênio/metabolismo , Sepse/tratamento farmacológico , Sepse/metabolismo , Camundongos , Nanopartículas/química , Dióxido de Silício/química , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos
8.
Biomater Sci ; 12(11): 2914-2929, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38639605

RESUMO

Photothermal therapy (PTT) has emerged as a promising approach for treating bacterial infections. However, achieving a high photothermal conversion efficiency (PCE) of photothermal agents (PTAs) remains a challenge. Such a problem is usually compensated by the use of a high-intensity laser, which inevitably causes tissue damage. Here, we present a universal strategy to enhance PCE by regulating the molecular aggregation states of PTAs within thermoresponsive nanogels. We demonstrate the effectiveness of this approach using aggregation-induced emission (AIE) and aggregation-caused quenching (ACQ) PTAs, showing significant enhancements in PCE without the need for intricate molecular modifications. Notably, the highest PCEs reach up to 80.9% and 64.4% for AIE-NG and ACQ-NG, respectively, which are nearly 2-fold of their self-aggregate counterparts. Moreover, we elucidate the mechanism underlying PCE enhancement, highlighting the role of strong intermolecular π-π interactions facilitated by nanogel-induced volume contraction. Furthermore, we validate the safety and efficacy of this strategy in in vitro and in vivo models of bacterial infections at safe laser power densities, demonstrating its potential for clinical translation. Our findings offer a straightforward, universal, and versatile method to improve PTT outcomes while minimizing cytotoxicity, paving the way for enhanced treatment of bacterial infections with safe PTT protocols.


Assuntos
Terapia Fototérmica , Animais , Camundongos , Humanos , Infecções Bacterianas/terapia , Nanogéis/química
9.
Biomaterials ; 308: 122576, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38640785

RESUMO

Biomaterial-associated infection (BAI) is considered a unique infection due to the presence of a biomaterial yielding frustrated immune-cells, ineffective in clearing local micro-organisms. The involvement of surface-adherent/surface-adapted micro-organisms in BAI, logically points to biomaterial surface-modifications for BAI-control. Biomaterial surface-modification is most suitable for prevention before adhering bacteria have grown into a mature biofilm, while BAI-treatment is virtually impossible through surface-modification. Hundreds of different surface-modifications have been proposed for BAI-control but few have passed clinical trials due to the statistical near-impossibility of benefit-demonstration. Yet, no biomaterial surface-modification forwarded, is clinically embraced. Collectively, this leads us to conclude that surface-modification is a dead-end road. Accepting that BAI is, like most human infections, due to surface-adherent biofilms (though not always to a foreign material), and regarding BAI as a common infection, opens a more-generally-applicable and therewith easier-to-validate road. Pre-clinical models have shown that stimuli-responsive nano-antimicrobials and antibiotic-loaded nanocarriers exhibit prolonged blood-circulation times and can respond to a biofilm's micro-environment to penetrate and accumulate within biofilms, prompt ROS-generation and synergistic killing with antibiotics of antibiotic-resistant pathogens without inducing further antimicrobial-resistance. Moreover, they can boost frustrated immune-cells around a biomaterial reducing the importance of this unique BAI-feature. Time to start exploring the nano-road for BAI-control.


Assuntos
Materiais Biocompatíveis , Biofilmes , Nanotecnologia , Propriedades de Superfície , Animais , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Materiais Biocompatíveis/química , Biofilmes/efeitos dos fármacos , Nanotecnologia/métodos , Próteses e Implantes , Infecções Relacionadas à Prótese/prevenção & controle
10.
Adv Mater ; 36(28): e2401918, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38662940

RESUMO

The complex pathologies in Alzheimer's disease (AD) severely limit the effectiveness of single-target pharmic interventions, thus necessitating multi-pronged therapeutic strategies. While flexibility is essentially demanded in constructing such multi-target systems, for achieving optimal synergies and also accommodating the inherent heterogeneity within AD. Utilizing the dynamic reversibility of supramolecular strategy for conferring sufficient tunability in component substitution and proportion adjustment, amphiphilic calixarenes are poised to be a privileged molecular tool for facilely achieving function integration. Herein, taking ß-amyloid (Aß) fibrillation and oxidative stress as model combination pattern, a supramolecular multifunctional integration is proposed by co-assembling guanidinium-modified calixarene with ascorbyl palmitate and loading dipotassium phytate within calixarene cavity. Serial pivotal events can be simultaneously addressed by this versatile system, including 1) inhibition of Aß production and aggregation, 2) disintegration of Aß fibrils, 3) acceleration of Aß metabolic clearance, and 4) regulation of oxidative stress, which is verified to significantly ameliorate the cognitive impairment of 5×FAD mice, with reduced Aß plaque content, neuroinflammation, and neuronal apoptosis. Confronted with the extremely intricate clinical realities of AD, the strategy presented here exhibits ample adaptability for necessary alterations on combinations, thereby may immensely expedite the advancement of AD combinational therapy through providing an exceptionally convenient platform.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Calixarenos , Nanopartículas , Estresse Oxidativo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/química , Nanopartículas/química , Camundongos , Calixarenos/química , Estresse Oxidativo/efeitos dos fármacos , Humanos
11.
Adv Mater ; 36(39): e2313869, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38688523

RESUMO

Accumulation of pathological tau is a hallmark of Alzheimer's disease (AD), which correlates more closely with cognitive impairment than does the amyloid-ß (Aß) burden. Autophagy is a powerful process for the clearance of toxic proteins including aberrant tau. However, compromised autophagy is demonstrated in neurodegeneration including AD, and current autophagy inducers remain enormously challenging due to inability of restoring autophagy pathway and lack of targeting specificity. Here, pathogenic tau-specific autophagy based on customized nanochaperone is developed for AD treatment. In this strategy, the nanochaperone can selectively bind to pathogenic tau and maintain tau homeostasis, thereby ensuring microtubule stability which is important for autophagy pathway. Meanwhile, the bound pathogenic tau can be sequestered in autophagosomes by in situ autophagy activation of nanochaperone. Consequently, autophagosomes wrapping with pathogenic tau are able to be trafficked along the stabilized microtubule to achieve successful fusion with lysosomes, resulting in the enhancement of autophagic flux and pathologic tau clearance. After treatment with this nanochaperone-mediated autophagy strategy, the tau burden, neuron damages, and cognitive deficits of AD mice are significantly alleviated in the brain. Therefore, this work represents a promising candidate for AD-targeted therapy and provides new insights into future design of anti-neurodegeneration drugs.


Assuntos
Doença de Alzheimer , Autofagia , Proteínas tau , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/tratamento farmacológico , Animais , Camundongos , Humanos , Autofagossomos/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Microtúbulos/metabolismo , Nanopartículas/química
12.
Biofilm ; 7: 100188, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38495770

RESUMO

Dispersal of infectious biofilms increases bacterial concentrations in blood. To prevent sepsis, the strength of a dispersant should be limited to allow the immune system to remove dispersed bacteria from blood, preferably without antibiotic administration. Biofilm bacteria are held together by extracellular polymeric substances that can be degraded by dispersants. Currently, comparison of the strength of dispersants is not possible by lack of a suitable comparison parameter. Here, a biofilm dispersal parameter is proposed that accounts for differences in initial biofilm properties, dispersant concentration and exposure time by using PBS as a control and normalizing outcomes with respect to concentration and time. The parameter yielded near-identical values based on dispersant-induced reductions in biomass or biofilm colony-forming-units and appeared strain-dependent across pathogens. The parameter as proposed is largely independent of experimental methods and conditions and suitable for comparing different dispersants with respect to different causative strains in particular types of infection.

13.
J Control Release ; 368: 740-755, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499092

RESUMO

Chronic wound treatment has emerged as a significant healthcare concern worldwide due to its substantial economic burden and the limited effectiveness of current treatments. Effective management of biofilm infections, regulation of excessive oxidative stress, and promotion of tissue regeneration are crucial for addressing chronic wounds. Hydrogel stands out as a promising candidate for chronic wound treatment. However, its clinical application is hindered by the difficulty in designing and fabricating easily and conveniently. To overcome these obstacles, we present a supermolecular G-quadruplex hydrogel with the desired multifunction via a dynamic covalent strategy and Hoogsteen-type hydrogen bonding. The G-quadruplex hydrogel is made from the self-assembly of guanosine, 2-formylphenyboronic acid, polyethylenimine, and potassium chloride, employing dynamic covalent strategy and Hoogsteen-type hydrogen bonding. In the acidic/oxidative microenvironment associated with bacterial infections, the hydrogel undergoes controlled degradation, releasing the polyethylenimine domain, which effectively eliminates bacteria. Furthermore, nanocomplexes comprising guanosine monophosphate and manganese sulfate are incorporated into the hydrogel skeleton, endowing it with the ability to scavenge reactive oxygen species and modulate macrophages. Additionally, the integration of basic fibroblast growth factor into the G-quadruplex skeleton through dynamic covalent bonds facilitates controlled tissue regeneration. In summary, the facile preparation process and the incorporation of multiple functionalities render the G-quadruplex hydrogel a highly promising candidate for advanced wound dressing. It holds great potential to transition from laboratory research to clinical practice, addressing the pressing needs of chronic wound management.


Assuntos
Surdez , Hidrogéis , Humanos , Polietilenoimina , Bandagens , Antibacterianos/farmacologia , Biofilmes
14.
Adv Mater ; 36(19): e2309927, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387609

RESUMO

Cytokines are powerful in cancer immunotherapy, however, their therapeutic potential is limited by the severe systemic toxicity. Here a potent strategy to reduce the toxicity of systemic cytokine therapy by delivering its denatured form using a finely designed nanochaperone, is described. It is demonstrated that even if the denatured protein cargos are occasionally released under normal physiological conditions they are still misfolded, while can effectively refold into native states and release to function in tumor microenvironment. Consequently, the systemic toxicity of cytokines is nearly completely overcome. Moreover, an immunogenic cell death (ICD)-inducing chemotherapeutic is further loaded and delivered to tumor using this nanochaperone to trigger the release of tumor-associated antigens (TAAs) that are subsequently captured in situ by nanochaperone and then reflows into lymph nodes (LNs) to promote antigen cross-presentation. This optimized personalized nanochaperone-vaccine demonstrates unprecedented suppressive effects against large, advanced tumors, and in combination with immune checkpoint blockade (ICB) therapy results in a significant abscopal effect and inhibition of postoperative tumor recurrence and metastasis. Hence, this approach provides a simple and universal delivery strategy to reduce the systemic toxicities of cytokines, as well as provides a robust personalized cancer vaccination platform, which may find wide applications in cancer immunotherapy.


Assuntos
Antígenos de Neoplasias , Imunoterapia , Interleucina-12 , Nanoestruturas , Animais , Humanos , Camundongos , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Vacinas Anticâncer/química , Linhagem Celular Tumoral , Morte Celular Imunogênica/efeitos dos fármacos , Imunoterapia/métodos , Interleucina-12/química , Interleucina-12/metabolismo , Interleucina-12/toxicidade , Nanopartículas/química , Nanoestruturas/química , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Dobramento de Proteína , Microambiente Tumoral/efeitos dos fármacos
15.
Sci Adv ; 10(6): eadk0716, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38324678

RESUMO

Nanoparticle-based cancer immunotherapy has shown promising therapeutic potential in clinical settings. However, current research mainly uses nanoparticles as delivery vehicles but overlooks their potential to directly modulate immune responses. Inspired by the endogenous endoplasmic reticulum (ER) stress caused by unfolded/misfolded proteins, we present a rationally designed immunogenic cell death (ICD) inducer named NanoICD, which is a nanoparticle engineered for ER targeting and retention. By carefully controlling surface composition and properties, we have obtained NanoICD that can effectively accumulate in the ER, induce ER stress, and activate ICD-associated immune responses. In addition, NanoICD is generally applicable to various proteins and enzymes to further enhance the immunomodulatory capacity, exemplified by encapsulating catalase (CAT) to obtain NanoICD/CAT, effectively alleviated immunosuppressive tumor microenvironment and induced robust antitumor immune responses in 4T1-bearing mice. This work demonstrates engineered nanostructures' potential to autonomously regulate biological processes and provides insights into the development of advanced nanomedicines for cancer treatment.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Camundongos , Animais , Neoplasias/tratamento farmacológico , Morte Celular Imunogênica , Antineoplásicos/farmacologia , Imunoterapia , Nanopartículas/uso terapêutico , Linhagem Celular Tumoral , Microambiente Tumoral
16.
Adv Mater ; 36(7): e2306376, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37944993

RESUMO

Designing an effective treatment strategy to combat oral diseases caused by complex polymicrobial biofilms remains a great challenge. Herein, a series of metal-phenolic network with Pd nanoparticle nodes using polyphenols as stabilizers and reducing agents is constructed. Among them, sulfonated lignin-Pd (SLS-Pd) with ultrafine size palladium nanoparticles and broadband near infrared absorption exhibit excellent oxidase-like activity and stable photothermal effect. In vitro experiments demonstrate that the superoxide radical generated by SLS-Pd oxidase-like activity exhibits selective antibacterial effects, while its photothermal effect induced hyperthermia exhibits potent antifungal properties. This difference is further elucidated by RNA-sequencing analysis and all-atom simulation. Moreover, the SLS-Pd-mediated synergistic antimicrobial system exhibits remarkable efficacy in combating various biofilms and polymicrobial biofilms. By establishing a root canal model and an oropharyngeal candidiasis model, the feasibility of the synergistic antimicrobial system in treating oral biofilm-related infections is further validated. This system provides a promising therapeutic approach for polymicrobial biofilm-associated infections in the oral cavity.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanopartículas Metálicas/uso terapêutico , Paládio/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Biofilmes
18.
Mater Horiz ; 10(12): 5547-5554, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37843027

RESUMO

Regulating protein folding including assisting de novo folding, preventing misfolding and aggregation, and facilitating refolding of proteins are of significant importance for retaining protein's biological activities. Here, we report a mixed shell polymeric micelle (MSPM)-based self-cooperative nanochaperone (self-CO-nChap) with enhanced activity to facilitate protein refolding. This self-CO-nChap was fabricated by introducing Hsp40-mimetic artificial carriers into the traditional nanochaperone to cooperate with the Hsp70-mimetic confined hydrophobic microdomains. The artificial carrier facilitates transfer and immobilization of client proteins into confined hydrophobic microdomains, by which significantly improving self-CO-nChap's capability to inhibit unfolding and aggregation of client proteins, and finally facilitating refolding. Compared to traditional nanochaperones, the self-CO-nChap significantly enhances the thermal stability of horseradish peroxidase (HRP) epicyclically under harsher conditions. Moreover, the self-CO-nChap efficiently protects misfolding-prone proteins, such as immunoglobulin G (IgG) antibody from thermal denaturation, which is hardly achieved using traditional nanochaperones. In addition, a kinetic partitioning mechanism was devised to explain how self-CO-nChap facilitates refolding by regulating the cooperative effect of kinetics between the nanochaperone and client proteins. This work provides a novel strategy for the design of protein folding regulatory materials, including nanochaperones.


Assuntos
Proteínas de Choque Térmico HSP70 , Polímeros , Humanos , Redobramento de Proteína
19.
J Mater Chem B ; 11(45): 10778-10792, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37901894

RESUMO

Bacterial sepsis is a life-threatening condition caused by bacteria entering the bloodstream and triggering an immune response, underscoring the importance of early recognition and prompt treatment. Nanomedicine holds promise for addressing sepsis through improved diagnostics, nanoparticle biosensors for detection and imaging, enhanced antibiotic delivery, combating resistance, and immune modulation. However, challenges remain in ensuring safety, regulatory compliance, scalability, and cost-effectiveness before clinical implementation. Further research is needed to optimize design, efficacy, safety, and regulatory strategies for effective utilization of nanomedicines in bacterial sepsis diagnosis and treatment. This review highlights the significant potential of nanomedicines, including improved drug delivery, enhanced diagnostics, and immunomodulation for bacterial sepsis. It also emphasizes the need for further research to optimize design, efficacy, safety profiles, and address regulatory challenges to facilitate clinical translation.


Assuntos
Nanopartículas , Nanoestruturas , Sepse , Humanos , Nanoestruturas/uso terapêutico , Nanomedicina/métodos , Sepse/diagnóstico , Sepse/tratamento farmacológico , Imunomodulação
20.
Biomacromolecules ; 24(11): 5230-5244, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37733485

RESUMO

As an acute ophthalmic infection, bacterial keratitis (BK) can lead to severe visual morbidity, such as corneal perforation, intraocular infection, and permanent corneal opacity, if rapid and effective treatments are not available. In addition to eradicating pathogenic bacteria, protecting corneal tissue from oxidative damage and promoting wound healing by relieving inflammation are equally critical for the efficient treatment of BK. Besides, it is very necessary to improve the bioavailability of drugs by enhancing the ocular surface adhesion and corneal permeability. In this investigation, therefore, a synergistic antibiotic-antioxidant treatment of BK was achieved based on multifunctional block copolymer vesicles, within which ciprofloxacin (CIP) was simultaneously encapsulated during the self-assembly. Due to the phenylboronic acid residues in the corona layer, these vesicles exhibited enhanced muco-adhesion, deep corneal epithelial penetration, and bacteria-targeting, which facilitated the drug delivery to corneal bacterial infection sites. Additionally, the abundant thioether moieties in the hydrophobic membrane enabled the vesicles to both have ROS-scavenging capacity and accelerated CIP release at the inflammatory corneal tissue. In vivo experiments on a mice model demonstrated that the multifunctional polymer vesicles achieved efficient treatment of BK, owing to the enhanced corneal adhesion and penetration, bacteria targeting, ROS-triggered CIP release, and the combined antioxidant-antibiotic therapy. This synergistic strategy holds great potential in the treatment of BK and other diseases associated with bacterial infections.


Assuntos
Infecções Oculares Bacterianas , Ceratite , Animais , Camundongos , Antioxidantes/farmacologia , Polímeros/química , Espécies Reativas de Oxigênio , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ciprofloxacina , Infecções Oculares Bacterianas/tratamento farmacológico , Infecções Oculares Bacterianas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA