Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Microbiol ; 9(3): 595-613, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38347104

RESUMO

Microbial breakdown of organic matter is one of the most important processes on Earth, yet the controls of decomposition are poorly understood. Here we track 36 terrestrial human cadavers in three locations and show that a phylogenetically distinct, interdomain microbial network assembles during decomposition despite selection effects of location, climate and season. We generated a metagenome-assembled genome library from cadaver-associated soils and integrated it with metabolomics data to identify links between taxonomy and function. This universal network of microbial decomposers is characterized by cross-feeding to metabolize labile decomposition products. The key bacterial and fungal decomposers are rare across non-decomposition environments and appear unique to the breakdown of terrestrial decaying flesh, including humans, swine, mice and cattle, with insects as likely important vectors for dispersal. The observed lockstep of microbial interactions further underlies a robust microbial forensic tool with the potential to aid predictions of the time since death.


Assuntos
Consórcios Microbianos , Microbiologia do Solo , Camundongos , Humanos , Animais , Suínos , Bovinos , Cadáver , Metagenoma , Bactérias
2.
medRxiv ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38076824

RESUMO

Alzheimer's disease (AD) is influenced by a variety of modifiable risk factors, including a person's dietary habits. While the ketogenic diet (KD) holds promise in reducing metabolic risks and potentially affecting AD progression, only a few studies have explored KD's metabolic impact, especially on blood and cerebrospinal fluid (CSF). Our study involved participants at risk for AD, either cognitively normal or with mild cognitive impairment. The participants consumed both a modified Mediterranean-ketogenic diet (MMKD) and the American Heart Association diet (AHAD) for 6 weeks each, separated by a 6-week washout period. We employed nuclear magnetic resonance (NMR)-based metabolomics to profile serum and CSF and metagenomics profiling on fecal samples. While the AHAD induced no notable metabolic changes, MMKD led to significant alterations in both serum and CSF. These changes included improved modifiable risk factors, like increased HDL-C and reduced BMI, reversed serum metabolic disturbances linked to AD such as a microbiome-mediated increase in valine levels, and a reduction in systemic inflammation. Additionally, the MMKD was linked to increased amino acid levels in the CSF, a breakdown of branched-chain amino acids (BCAAs), and decreased valine levels. Importantly, we observed a strong correlation between metabolic changes in the CSF and serum, suggesting a systemic regulation of metabolism. Our findings highlight that MMKD can improve AD-related risk factors, reverse some metabolic disturbances associated with AD, and align metabolic changes across the blood-CSF barrier.

3.
Biometrics ; 75(1): 235-244, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30039859

RESUMO

Motivated by regression analysis for microbiome compositional data, this article considers generalized linear regression analysis with compositional covariates, where a group of linear constraints on regression coefficients are imposed to account for the compositional nature of the data and to achieve subcompositional coherence. A penalized likelihood estimation procedure using a generalized accelerated proximal gradient method is developed to efficiently estimate the regression coefficients. A de-biased procedure is developed to obtain asymptotically unbiased and normally distributed estimates, which leads to valid confidence intervals of the regression coefficients. Simulations results show the correctness of the coverage probability of the confidence intervals and smaller variances of the estimates when the appropriate linear constraints are imposed. The methods are illustrated by a microbiome study in order to identify bacterial species that are associated with inflammatory bowel disease (IBD) and to predict IBD using fecal microbiome.


Assuntos
Bactérias/isolamento & purificação , Modelos Lineares , Microbiota , Simulação por Computador , Intervalos de Confiança , Fezes/microbiologia , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Funções Verossimilhança , Análise de Regressão
4.
Biometrics ; 73(4): 1266-1278, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28369713

RESUMO

In human microbiome studies, sequencing reads data are often summarized as counts of bacterial taxa at various taxonomic levels specified by a taxonomic tree. This article considers the problem of analyzing two repeated measurements of microbiome data from the same subjects. Such data are often collected to assess the change of microbial composition after certain treatment, or the difference in microbial compositions across body sites. Existing models for such count data are limited in modeling the covariance structure of the counts and in handling paired multinomial count data. A new probability distribution is proposed for paired-multinomial count data, which allows flexible covariance structure and can be used to model repeatedly measured multivariate count data. Based on this distribution, a test statistic is developed for testing the difference in compositions based on paired multinomial count data. The proposed test can be applied to the count data observed on a taxonomic tree in order to test difference in microbiome compositions and to identify the subtrees with different subcompositions. Simulation results indicate that proposed test has correct type 1 errors and increased power compared to some commonly used methods. An analysis of an upper respiratory tract microbiome data set is used to illustrate the proposed methods.


Assuntos
Bactérias/classificação , Classificação/métodos , Microbiota , Modelos Estatísticos , Simulação por Computador , Humanos , Infecções Respiratórias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA