Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IBRO Neurosci Rep ; 16: 535-541, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38706972

RESUMO

Background: Ischaemic stroke can lead to many complications, but treatment options are limited. Icariin is a traditional Chinese medicine with reported neuroprotective effects against ischaemic cerebral injury; however, the underlying mechanisms by which icariin ameliorates cell apoptosis require further study. Purpose: This study aimed to investigate the therapeutic potential of icariin after ischaemic stroke and the underlying molecular mechanisms. Methods: N2a neuronal cells were used to create an in vitro oxygen-glucose deprivation (OGD) model. The effects of icariin on OGD cells were assessed using the CCK-8 kit to detect the survival of cells and based on the concentration, apoptosis markers, inflammation markers, and M2 pyruvate kinase isoenzyme (PKM2) expression were detected using western blotting, RT-qPCR, and flow cytometry. To investigate the underlying molecular mechanisms, we used the PKM2 agonist TEPP-46 and detected apoptosis-related proteins. Results: We demonstrated that icariin alleviated OGD-induced apoptosis in vitro. The expression levels of the apoptosis marker proteins caspase-3 and Bax were upregulated and Bcl-2 was downregulated. Furthermore, icariin reduced inflammation and downregulated the expression of PKM2. Moreover, activation of the PKM2 by pretreatment with the PKM2 agonist TEPP-46 enhanced the effects on OGD induced cell apoptosis in vitro. Conclusion: This study elucidated the underlying mechanism of PKM2 in OGD-induced cell apoptosis and highlighted the potential of icariin in the treatment of ischaemic stroke.

2.
J Adv Res ; 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37871772

RESUMO

INTRODUCTION: Sepsis-induced cardiac injury is the leading cause of death in patients. Recent studies have reported that reactive oxygen species (ROS)-mediated ferroptosis and macrophage-induced inflammation are the two main key roles in the process of cardiac injury. The combination of ferroptosis and inflammation inhibition is a feasible strategy in the treatment of sepsis-induced cardiac injury. OBJECTIVES: In the present study, ceria nanozyme coordination with curcumin (CeCH) was designed by a self-assembled method with human serum albumin (HSA) to inhibit ferroptosis and inflammation of sepsis-induced cardiac injury. METHODS AND RESULTS: The formed CeCH obtained the superoxide dismutase (SOD)-like and catalase (CAT)-like activities from ceria nanozyme to scavenge ROS, which showed a protective effect on cardiomyocytes in vitro. Furthermore, it also showed ferroptosis inhibition to reverse cell death from RSL3-induced cardiomyocytes, denoted from curcumin. Due to the combination therapy of ceria nanozyme and curcumin, the formed CeCH NPs could also promote M2 macrophage polarization to reduce inflammation in vitro. In the lipopolysaccharide (LPS)-induced sepsis model, the CeCH NPs could effectively inhibit ferroptosis, reverse inflammation, and reduce the release of pro-inflammatory factors, which markedly alleviated the myocardial injury and recover the cardiac function. CONCLUSION: Overall, the simple self-assembled strategy with ceria nanozyme and curcumin showed a promising clinical application for sepsis-induced cardiac injury by inhibiting ferroptosis and inflammation. Acknowledgments: This study was supported by grants of the National Natural Science Foundation of China (82100398); the Nanjing Medical Science and Technique Development Foundation (YKK21068); Clinical Trials from the Affiliated Drum Tower Hospital, Medical School of Nanjing University (2023-LCYJ-PY-24); the Jiangsu Research Hospital Association for Precision Medication (JY202120); the Jiangsu Pharmaceutical Association for Jinpeiying Project (J2021001); China Postdoctoral Science Foundation (2022M721576).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA