Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Contam Hydrol ; 266: 104413, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39137722

RESUMO

Soil degradation, characterized by the deterioration of soil physical and chemical properties, nutrient loss, and an increase in toxic substances, is a key ecological concern in mining activities. This study explores the use of waste black shale from mining development as an additive to loess to enhance soil properties for reclamation in mining areas. The research includes resistivity and organic carbon content tests on modified reclaimed loess with varying black shale and water contents. Additionally, the electrical properties of these modified soils are investigated across different AC frequencies. The results highlight the significance of soil plasticity and a 1.5% black shale content in influencing reclaimed loess's electrical properties. Moisture content and black shale influence changes in soil conductive paths and resistivity. The abundance of clay minerals in black shale plays a crucial role in altering soil electrical resistivity due to the adsorption of cations in water and the directional transport under an electric field. Considering soil's three-phase composition and diffuse bilayer structure, the study elucidates the mechanism behind changes in the electrical properties of improved reclaimed loess, accounting for water and black shale content. This research demonstrates the feasibility of using black shale as a soil additive and emphasizes the non-destructive assessment potential of electrical resistivity test (ERT) measurements for modified reclaimed soils.


Assuntos
Mineração , Solo , Água , Solo/química , Água/química , Recuperação e Remediação Ambiental/métodos , Argila/química , Impedância Elétrica
2.
Sci Total Environ ; 904: 167228, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37734598

RESUMO

Coal pyrolysis is a important method for classifying and utilizing coal resources and contributes to enhanced comprehensive resource utilization. However, In high-temperature areas such as coal pyrolysis, there is an abnormal phenomenon release of radioactive gas radon, understanding the relationship between temperature and radon exhalation characteristics, as well as the underlying mechanisms, holds great importance for assessing radon pollution in mining areas. After coal undergoes pyrolysis under high temperature conditions, its material composition, pore structure, water content, and other properties have changed. The pyrolysis products in different atmosphere environments have differences, and the characteristics of radon emission are also different. To address this, the present study conducted coal pyrolysis experiments in both aerobic and anaerobic environments, using long flame coal sourced from Yulin, China. The radon release concentration of the pyrolysis products was measured. The research findings indicate that during pyrolysis at elevated temperatures, the ratio of coal mass loss is constantly increasing. High temperatures promote the development of pores and fissures, and significant changes in coal properties at temperature thresholds (300 °C and 500 °C). The specific surface area, pore volume, and fracture ratio all display substantial increases, and the amplitude of change is greater under aerobic conditions. The fractal dimension of total pores and macropores shows continuous growth, while the specific surface area, pore volume, and fracture ratio exhibit a strong negative correlation with the radon emission rate of pyrolysis products. The expansion and penetration of pores and cracks, along with the release of a substantial amount of pyrolysis gas, accelerate the transformation, migration, and exhalation of radon, resulting in a negative correlation between the heat treatment temperature and the radon release rate of pyrolysis products. Under aerobic conditions, the radon release rate of pyrolysis products decreases more significantly.

3.
Sci Total Environ ; 849: 157935, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35948128

RESUMO

The inhalation of a high concentration of radon gas increases the risk of cancer. Therefore, it is of utmost necessity to pay due attention to the problem of environmental radon pollution. The high radioactivity above the coal slab causes serious radon radiation contamination on the mining grounds in coal mining areas such as the northern part of China and the western part of the United States. At present, there is a lack of research on radon exhalation in different lithologies. In this study, the differences in the radon exhalation of different lithologies at various depths and their controlling factors were studied by NMR and radon measurement. The results highlighted that the radon exhalation rates in different rocks varied from 0.3 to 0.6 Bq/m2·s. The average radon exhalation rate of the soil was 0.7 Bq/m2·s, and the radon exhalation rates of different lithologies followed the pattern red clay > loess > sandstone > mudstone > coal. The radon exhalation rate increased initially, followed by a decrease, and the radon exhalation rate was the highest at the boundary between the soil and rock layers. The radon exhalation rates of different lithologies have a strong correlation with the small pores (<0.1 µm), which govern the changes in the porous structure with depth. The results of this study are important from the perspective evaluation of environmental radon pollution.


Assuntos
Monitoramento de Radiação , Radônio , Argila , Carvão Mineral , Expiração , Monitoramento de Radiação/métodos , Radônio/análise , Solo
4.
Sci Total Environ ; 844: 157148, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35798108

RESUMO

Identifying the release characteristics of radon (Rn-222) in coal mines is critical preventing cancer risks for coal miners and coal fires. The present investigates the pore structure characteristics of coal samples from eleven coal mines in northern China, using low-temperature nitrogen adsorption (LTNA) test, combined with the radon exhalation rate in coal. The findings of the study reveal that the N2 adsorption isotherms of all the coal samples fall under the inverse S type, with micropores dominating in low-rank coals and mesopores dominating in the medium and high-rank coals, due to the separation of organic matter and quartz by shrinkage of micro-components and the orderly arrangement of aromatic rings as a result of ring condensation and thermal cleavage. The pore diameters of coal samples show similar distribution characteristics for sizes >2 nm, represented by a single peak near the pore diameter of 3 nm. Ash yield controls the mesopore and micropore volumes of medium and high-rank coal samples. The radon emission rate displays positive linear correlation (r2 = 0.87) with micropore volumes of analyzed coal samples due to the infillings of free radon in micropores. The radon element is derived by uranium decay, which causes a greater radon exhalation rate of coal mines in areas near the uranium mines. The results of the present study could be helpful to understand the influence mechanism of radon emission processes in coal, which provides an important basis for reducing cancer risks for coal miners and predicting coal fires.


Assuntos
Radônio , Urânio , Carvão Mineral/análise , Mineração , Radônio/análise , Urânio/química
5.
ACS Omega ; 5(29): 18424-18431, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32743219

RESUMO

Three different ranks of Chinese coals were investigated on the thermal conductivity and corresponding molecular structure by thermal analyzer, 13C NMR, and HRTEM techniques. The thermal conductivity of coals measured in room temperature first shows a decrease, then a slight increase, and finally a sharp increase with increasing coalification. Ranging from 30 to 150 °C, increasing the temperature slightly improves the thermal conductivity of coals with varying degrees. Water with a higher thermal conductivity than air contributes to the thermal conductivity of porous coal samples. The value of thermal conductivity is higher along coal bedding planes than when perpendicular to beddings, which indicates the anisotropy of coal thermal conductivity. The anisotropy degree increases with the rank of coals and is affected by clay minerals when coals adsorb water. Molecular structure analysis shows that polycondensed aromatic ring related to lattice vibration contributes to the increase of thermal conductivity. The aliphatic bridges among aromatic clusters ensure the continuity of atom vibrations and contribute to energy transport, but the free-ended side chains have the opposite effect. The relative ordered distributions of lattice fringes of anthracite, which were higher than those of bituminous coal, enhance the anisotropy of thermal conductivity.

6.
Mol Med Rep ; 8(4): 1149-54, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23982226

RESUMO

Dendritic cells (DCs) and myeloid-derived suppressor cells (MDSCs) perform a number of functions in different immunological settings. In standard in vitro experiments, DCs are produced from mouse bone marrow (BM) cells in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-4. Our previous study demonstrated that BM precursor cells could differentiate into MDSCs when co-cultured with poly (I:C). In the present study, BM precursor cells cultured in GM-CSF and IL-4 were treated with CpG oligodeoxynucleotide (CpG ODN). We observed that Gr1+CD11b+ cells exhibiting MDSC functions accumulated in the co-culture system. A similar phenomenon was also observed in Listeria monocytogenes-infected mice. In conclusion, we demonstrated that prolonged CpG ODN stimulation could inhibit the development of DCs and induce the differentiation of BM precursor cells into MDSCs.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células Mieloides/metabolismo , Células Progenitoras Mieloides/fisiologia , Oligodesoxirribonucleotídeos/farmacologia , Animais , Proliferação de Células , Técnicas de Cocultura , Citocinas/metabolismo , Células Dendríticas/metabolismo , Feminino , Listeria monocytogenes/imunologia , Listeriose/imunologia , Listeriose/metabolismo , Listeriose/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Progenitoras Mieloides/efeitos dos fármacos , Fagocitose , Fenótipo , Linfócitos T/imunologia , Receptor Toll-Like 9/agonistas
7.
IEEE Trans Vis Comput Graph ; 12(5): 1283-90, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17080863

RESUMO

We propose a novel Persistent OcTree (POT) indexing structure for accelerating isosurface extraction and spatial filtering from volumetric data. This data structure efficiently handles a wide range of visualization problems such as the generation of view-dependent isosurfaces, ray tracing, and isocontour slicing for high dimensional data. POT can be viewed as a hybrid data structure between the interval tree and the Branch-On-Need Octree (BONO) in the sense that it achieves the asymptotic bound of the interval tree for identifying the active cells corresponding to an isosurface and is more efficient than BONO for handling spatial queries. We encode a compact octree for each isovalue. Each such octree contains only the corresponding active cells, in such a way that the combined structure has linear space. The inherent hierarchical structure associated with the active cells enables very fast filtering of the active cells based on spatial constraints. We demonstrate the effectiveness of our approach by performing view-dependent isosurfacing on a wide variety of volumetric data sets and 4D isocontour slicing on the time-varying Richtmyer-Meshkov instability dataset.


Assuntos
Algoritmos , Gráficos por Computador , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Armazenamento e Recuperação da Informação/métodos , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA