Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(45): e202310203, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37786301

RESUMO

Light olefins are abundantly manufactured in the petroleum industry and thus represent ideal starting materials for modern chemical synthesis. Selective and divergent transformations of feedstock light olefins to value-added chemicals are highly sought-after but remain challenging. Herein we report an exceptionally regioselective carbonickelation of light alkenes followed by in situ trapping with three types of nucleophiles, namely a reductant, base, or Grignard reagent. This protocol enables efficient 1,2-hydrofunctionalization, dicarbofunctionalization, and branched-selective Heck-type cross-coupling of light alkenes with aryl and alkenyl reagents to streamline access to diverse alkyl arenes and complex alkenes. Harnessing bulky N-heterocyclic carbene ligands with acenaphthyl backbones for nickel catalysts is crucial to attain high reactivity and selectivity. This strategy provides a rare, modular, and divergent platform for upgrading feedstock alkenes and is expected to find broad applications in medicinal chemistry and industrial processes.

2.
Chem Sci ; 14(16): 4390-4396, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37123189

RESUMO

The arylation of sterically hindered amines represents one of the long-standing challenges in synthetic chemistry. Herein, we report a highly efficient Ni-catalysed arylation of sterically hindered primary and secondary amines with aryl chlorides or phenol derivatives enabled by an unsymmetric N-heterocyclic carbene (NHC) ligand. The protocol provides general, efficient, and scalable access to various sterically demanding anilines in excellent yields under mild conditions. A wide range of functional groups and heterocycles are compatible (>50 examples), including those present in biologically relevant molecules. Computational studies suggest that the unsymmetric bulky and flexible NHC ligand was critical to balance the oxidative addition and reductive elimination elementary steps, thus promoting this challenging transformation.

3.
Science ; 379(6633): 662-670, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36795811

RESUMO

Despite the importance of enantioenriched alcohols in medicinal chemistry, total synthesis, and materials science, the efficient and selective construction of enantioenriched tertiary alcohols bearing two contiguous stereocenters has remained a substantial challenge. We report a platform for their preparation through the enantioconvergent, nickel-catalyzed addition of organoboronates to racemic, nonactivated ketones. We prepared several important classes of α,ß-chiral tertiary alcohols in a single step with high levels of diastereo- and enantioselectivity through a dynamic kinetic asymmetric addition of aryl and alkenyl nucleophiles. We applied this protocol to modify several profen drugs and to rapidly synthesize biologically relevant molecules. We expect this nickel-catalyzed, base-free ketone racemization process to be a widely applicable strategy for the development of dynamic kinetic processes.

4.
J Am Chem Soc ; 144(30): 13643-13651, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35857884

RESUMO

Direct asymmetric functionalization of the pyridyl C-H bond represents a longstanding challenge in organic chemistry. We herein describe the first enantioselective para-C-H activation of pyridines through the use of a Ni-Al bimetallic catalyst system and N-heterocyclic carbene (NHC) ligand for intermolecular hydroarylation of styrenes. The reaction procceds in high to excellent enantioselectivities (up to 98.5:1.5 er) and high site-selectivities for both styrene and pyridine components (up to >98:2). Consequently, a broad range of enantioenriched 1,1-diarylalkanes containing pyridine moieties could be prepared in a single step with 100% atom economy. Computational studies supported a mechanism involving a ligand-to-ligand H-transfer (LLHT) and reductive elimination sequence, with LLHT being the rate- and enantioselectivity-determining step. DFT studies indicate that the π-π stacking interaction between the NHC aryl fragment and trans-styrenes is critical for high reactivity and enantiocontrol.


Assuntos
Piridinas , Estirenos , Alquilação , Catálise , Ligantes , Estrutura Molecular , Prótons , Piridinas/química , Estirenos/química
5.
J Am Chem Soc ; 144(1): 130-136, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34941237

RESUMO

Acyclic quaternary carbon stereocenters exist widely in natural products and bioactive molecules, but their enantioselective construction remains a prominent challenge. In particular, multicomponent enantioselective couplings of simple precursors to acyclic all-carbon quaternary stereocenters are very rare. We describe herein an N-heterocyclic carbene (NHC)-Ni catalyzed redox-economical three-component reaction of aldehydes, alkynes, and enones that proceeds in a highly chemo-, regio-, and enantioselective manner. A wide variety of valuable acyclic α-quaternary chiral ketones were synthesized in a single step with 100% atom economy. This reaction proceeds through the formation of a transient cyclic enolate followed by an aldol reaction/ring-opening sequence. The strategy is expected to inspire new and efficient approaches to generate other acyclic quaternary stereocenters.

6.
J Am Chem Soc ; 143(31): 11963-11968, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34324325

RESUMO

The direct upgrading reaction of simple and readily available achiral alcohols via C-H functionalization is an ideal strategy to prepare value-added chiral higher alcohols. Herein, we disclose the first enantioconvergent upgrading reaction of simple racemic secondary alcohols to enantioenriched tertiary alcohols. An N-heterocyclic carbene (NHC)-nickel catalyst was leveraged to enable this highly efficient formal asymmetric alcohol α-C-H arylation via a dehydrogenation using phenyl triflate as a mild oxidant followed by asymmetric addition of arylboronic esters to the transient ketones. Mechanistic studies and control experiments were conducted to reveal the possible reasons for the exceptional control over chemo- and enantioselectivity.

7.
Angew Chem Int Ed Engl ; 60(29): 16077-16084, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33901337

RESUMO

The transition-metal-catalyzed C-N cross-coupling has revolutionized the construction of amines. Despite the innovations of multiple generations of ligands to modulate the reactivity of the metal center, ligands for the low-temperature enantioselective amination of aryl halides remain a coveted target of catalyst engineering. Designs that promote one elementary reaction often create bottlenecks at other steps. We here report an unprecedented low-temperature (as low as -50 °C), enantioselective Ni-catalyzed C-N cross-coupling of aryl chlorides with sterically hindered secondary amines via a kinetic resolution process (s factor up to >300). A bulky yet flexible chiral N-heterocyclic carbene (NHC) ligand is leveraged to drive both oxidative addition and reductive elimination with low barriers and control the enantioselectivity. Computational studies indicate that the rotations of multiple σ-bonds on the C2 -symmetric chiral ligand adapt to the changing needs of catalytic processes. We expect this design would be widely applicable to diverse transition states to achieve other challenging metal-catalyzed asymmetric cross-coupling reactions.

8.
Org Lett ; 23(7): 2571-2577, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33661655

RESUMO

We herein report a Ni-catalyzed three-component coupling of 1,3-butadiene, carbonyl compounds, and arylboronic acids as a general synthetic approach to 1,4-disubstituted homoallylic alcohols, an important class of compounds, which have previously not been straightforward to access. The reaction occurs efficiently using a Ni(cod)2 catalyst without any external base and ligand at ambient temperature and allows a highly regioselective and trans-selective 1,4-dicarbofunctionalization of feedstock butadiene in a single operation. This simple and practical protocol could apply to a comprehensive scope of substrates. The neutral conditions show extraordinary tolerance for even highly base-sensitive functional groups.

9.
Angew Chem Int Ed Engl ; 60(10): 5262-5267, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33241621

RESUMO

A general, efficient, highly enantio- and chemoselective N-heterocyclic carbene (NHC)/Ni-catalyzed addition of readily available and stable arylboronic esters to ketones is reported. This protocol provides unexpectedly fast access (usually 10 min) to various chiral tertiary alcohols with exceptionally broad substrate scope and excellent functional group tolerance (76 examples, up to 98 % ee). This process is orthogonal to other known Ni-mediated Suzuki-Miyaura couplings, as it tolerates aryl chlorides, fluorides, ethers, esters, amides, nitriles, and alkyl chlorides. The reaction is applied to late-stage modifications of various densely functionalized medicinally relevant molecules. Preliminary mechanistic studies suggest that a rare enantioselective η2 -coordinating activation of ketone carbonyls is involved. This cross-coupling-like mechanism is expected to enable other challenging transformations of ketones.

10.
J Am Chem Soc ; 141(37): 14938-14945, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31460761

RESUMO

Axially chiral biaryl scaffolds are essential structural units in chemistry. The asymmetric Pd-catalyzed Suzuki-Miyaura cross-coupling reaction has been widely recognized as one of the most practical methods for constructing atropisomers of biaryls. However, longstanding challenges remain in this field. For example, substrate scope is often narrow and specialized, functional groups and heterocycles can lead to reduced reactivity and selectivity, bulky ortho-substituents are usually needed, and reported methods are generally inapplicable to tetra-ortho-substituted biaryls. We have developed an unprecedented highly enantioselective N-heterocyclic carbene (NHC)-Pd catalyzed Suzuki-Miyaura cross-coupling reaction for the synthesis of atropisomeric biaryls. These reactions enable efficient coupling of aryl halides (Br, Cl) or aryl triflates with various types of aryl boron compounds (B(OH)2, Bpin, Bneo, BF3K), tolerate a remarkably broad scope of functional groups and heterocycles (>41 examples), employ low loading of catalyst (0.2-2 mol %), and proceed under mild conditions. The protocol provided general and efficient access to various atropisomeric biaryls and heterobiaryls in excellent enantioselectivities (up to 99% ee) with no need of using bulky ortho-substituted substrates and was effective for the synthesis of tetra-ortho-substituent biaryls. Moreover, the method was successfully applied to the diastereo- and enantioselective synthesis of atropisomeric ternaphthalenes. Critical to the success of the reaction is the development and application of an extremely bulky C2-symmetric chiral NHC, (R,R,R,R)-DTB-SIPE, as the ligand for palladium. To the best of our knowledge, this is the first highly enantioselective (>90% ee) example of a chiral NHC-metal-catalyzed C(sp2)-C(sp2) cross-coupling reaction.

11.
Angew Chem Int Ed Engl ; 58(38): 13433-13437, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31301089

RESUMO

Chiral polyfluoroarene derivatives are an important scaffold in chemistry. An unprecedented enantioselective C-H alkylation of polyfluoroarenes with alkenes is described. The reaction employs bulky chiral N-heterocyclic carbene (NHC) ligands for nickel catalysts to enable exclusive activation of C-H bonds over C-F bonds and complete endo-selective C-H annulation and excellent enantioselectivity. A wide variety of chiral fluorotetralins, compounds otherwise difficultly accessed but serve as important bioisosteric analogs of both tetralin and heterocycle units for drug design, are expediently synthesized from easily available substrates. To our knowledge, this is the first example of catalytic enantioselective C-H functionalization of polyfluoroarenes.

12.
Chem Commun (Camb) ; 55(60): 8848-8851, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31173003

RESUMO

An unprecedented base-catalysed reductive relay hydroboration of allylic alcohols is described. Commercially available nBuLi was found to be a robust transition metal-free initiator for this protocol, affording various boronic esters in high yield and selectivity. Mechanistically, this methodology involves a one-pot three-step successive process (dehydrocoupling/allylic hydride substitution/anti-Markovnikov hydroboration).

13.
J Am Chem Soc ; 141(14): 5628-5634, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30888167

RESUMO

Annulated pyridines are ubiquitous scaffolds in many bioactive molecules. A highly regio- and enantioselective Ni(0)-catalyzed endo-selective C-H cyclization of pyridines with alkenes has been developed. An unprecedented enantioselective C-H activation at pyridyl 3- or 4-positions was enabled by bulky chiral N-heterocyclic carbene ligands. This protocol provides expedient access to a series of optically active 5,6,7,8-tetrahydroquinolines and 5,6,7,8-tetrahydroisoquinolines, compounds otherwise accessed with difficulty, in moderate to high yields (up to 99% yield) and enantioselectivities (up to 99% ee). To our knowledge, this is the first example of enantioselective C-H cyclization of pyridines to chiral annulated products.

15.
Angew Chem Int Ed Engl ; 57(5): 1376-1380, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29230927

RESUMO

Reported is a highly enantioselective copper-catalyzed Markovnikov protoboration of unactivated terminal alkenes. A variety of simple and abundant feedstock α-olefins bearing a diverse array of functional groups and heterocyclic substituents can be used as substrates, and the reaction proceeds under mild reaction conditions at ambient temperature to provide expedient access to enantioenriched alkylboronic esters in good regioselectivity and with excellent enantiocontrol. Critical to the success of the protocol was the development and application of a novel, sterically hindered N-heterocyclic carbene, (R,R,R,R)-ANIPE, as the ligand for copper.

16.
Nature ; 532(7599): 353-6, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27018656

RESUMO

The chirality, or 'handedness', of a biologically active molecule can alter its physiological properties. Thus it is routine procedure in the drug discovery and development process to prepare and fully characterize all possible stereoisomers of a drug candidate for biological evaluation. Despite many advances in asymmetric synthesis, developing general and practical strategies for obtaining all possible stereoisomers of an organic compound that has multiple contiguous stereocentres remains a challenge. Here, we report a stereodivergent copper-based approach for the expeditious construction of amino alcohols with high levels of chemo-, regio-, diastereo- and enantioselectivity. Specifically, we synthesized these amino-alcohol products using sequential, copper-hydride-catalysed hydrosilylation and hydroamination of readily available enals and enones. This strategy provides a route to all possible stereoisomers of the amino-alcohol products, which contain up to three contiguous stereocentres. We leveraged catalyst control and stereospecificity simultaneously to attain exceptional control of the product stereochemistry. Beyond the immediate utility of this protocol, our strategy could inspire the development of methods that provide complete sets of stereoisomers for other valuable synthetic targets.


Assuntos
Amino Álcoois/química , Amino Álcoois/síntese química , Técnicas de Química Sintética , Cobre/química , Aminação , Catálise , Estrutura Molecular , Estereoisomerismo
17.
Science ; 349(6243): 62-6, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26138973

RESUMO

Catalytic assembly of enantiopure aliphatic amines from abundant and readily available precursors has long been recognized as a paramount challenge in synthetic chemistry. Here, we describe a mild and general copper-catalyzed hydroamination that effectively converts unactivated internal olefins­an important yet unexploited class of abundant feedstock chemicals­into highly enantioenriched α-branched amines (≥96% enantiomeric excess) featuring two minimally differentiated aliphatic substituents. This method provides a powerful means to access a broad range of advanced, highly functionalized enantioenriched amines of interest in pharmaceutical research and other areas.

18.
Nat Chem ; 7(1): 38-44, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25515888

RESUMO

The development of selective reactions that utilize easily available and abundant precursors for the efficient synthesis of amines is a long-standing goal of chemical research. Despite the centrality of amines in a number of important research areas, including medicinal chemistry, total synthesis and materials science, a general, selective and step-efficient synthesis of amines is still needed. Here, we describe a set of mild catalytic conditions utilizing a single copper-based catalyst that enables the direct preparation of three distinct and important amine classes (enamines, α-chiral branched alkylamines and linear alkylamines) from readily available alkyne starting materials with high levels of chemo-, regio- and stereoselectivity. This methodology was applied to the asymmetric synthesis of rivastigmine and the formal synthesis of several other pharmaceutical agents, including duloxetine, atomoxetine, fluoxetine and tolterodine.


Assuntos
Alcinos/química , Aminas/síntese química , Cobre/química , Aminação , Cloridrato de Atomoxetina , Compostos Benzidrílicos/síntese química , Catálise , Cresóis/síntese química , Cloridrato de Duloxetina , Fluoxetina/síntese química , Fenilpropanolamina/síntese química , Propilaminas/síntese química , Estereoisomerismo , Tiofenos/síntese química , Tartarato de Tolterodina
19.
Angew Chem Int Ed Engl ; 54(5): 1646-50, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25476241

RESUMO

The synthesis of 3,3-difluoro-2-oxindoles through a robust and efficient palladium-catalyzed CH difluoroalkylation is described. This process generates a broad range of difluorooxindoles from readily prepared starting materials. The use of BrettPhos as the ligand was crucial for high efficiency. Preliminary mechanistic studies suggest that oxidative addition is the rate-determining step for this process.


Assuntos
Flúor/química , Indóis/química , Paládio/química , Alquilação , Antibacterianos/síntese química , Antibacterianos/química , Carbono/química , Catálise , Hidrogênio/química , Indóis/síntese química , Oxindóis
20.
J Am Chem Soc ; 134(41): 17019-22, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23039221

RESUMO

A general catalytic enantioselective method that can produce five-, six-, and seven-membered N-heterocycles possessing various ketone moieties starting from stable and easily available cyclic hemiaminals and ketones was developed. The method involves three successive steps in one pot (aldol addition, dehydration, and enantioselective intramolecular aza-Michael reaction), all of which are promoted by a chiral copper(I)-conjugated Brønsted base catalyst. This method is useful for rapid access to versatile chiral building blocks for the synthesis of drug-lead alkaloids.


Assuntos
Alcaloides/síntese química , Cobre/química , Compostos Heterocíclicos/química , Cetonas/química , Nitrogênio/química , Compostos Organometálicos/química , Alcaloides/química , Catálise , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA