Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
bioRxiv ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38826326

RESUMO

Fibrosing cholangiopathies, including biliary atresia and primary sclerosing cholangitis, involve immune-mediated bile duct epithelial injury and hepatic bile acid (BA) retention (cholestasis). Regulatory T-cells (Tregs) can prevent auto-reactive lymphocyte activation, yet the effects of BA on this CD4 lymphocyte subset are unknown. Gene regulatory networks for hepatic CD4 lymphocytes in a murine cholestasis model revealed Tregs are polarized to Th17 during cholestasis. Following bile duct ligation, Stat3 deletion in CD4 lymphocytes preserved hepatic Treg responses. While pharmacological reduction of hepatic BA in MDR2-/- mice prompted Treg expansion and diminished liver injury, this improvement subsided with Treg depletion. A cluster of patients diagnosed with biliary atresia showed both increased hepatic Treg responses and improved 2-year native liver survival, supporting that Tregs might protect against neonatal bile duct obstruction. Together, these findings suggest liver BA determine Treg function and should be considered as a therapeutic target to restore protective hepatic immune responses.

2.
bioRxiv ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38798483

RESUMO

Fibrosis is a common outcome of numerous pathologies, including chronic kidney disease (CKD), a progressive renal function deterioration. Current approaches to target activated fibroblasts, key effector contributors to fibrotic tissue remodeling, lack specificity. Here, we report Gucy1α1 as a specific kidney fibroblast marker. Gucy1α1 levels significantly increased over the course of two clinically relevant murine CKD models and directly correlated with established fibrosis markers. Immunofluorescent (IF) imaging showed that Gucy1α1 comprehensively labelled cortical and medullary quiescent and activated fibroblasts in the control kidney and throughout injury progression, respectively. Unlike traditionally used markers platelet derived growth factor receptor beta (Pdgfrß) and vimentin (Vim), Gucy1α1 did not overlap with off-target populations such as podocytes. Notably, Gucy1α1 labelled kidney fibroblasts in both male and female mice. Furthermore, we observed elevated GUCY1α1 expression in the human fibrotic kidney and lung. Studies in the murine models of cardiac and liver fibrosis revealed Gucy1α1 elevation in activated Pdgfrß-, Vim- and alpha smooth muscle actin (αSma)-expressing fibroblasts paralleling injury progression and resolution. Overall, we demonstrate Gucy1α1 as an exclusive fibroblast marker in both sexes. Due to its multiorgan translational potential, GUCY1α1 might provide a novel promising strategy to specifically target and mechanistically examine fibroblasts.

3.
Front Immunol ; 14: 1287546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143762

RESUMO

Introduction: Significant evidence suggests a connection between transplant rejection and the presence of high levels of pre-existing memory T cells. Viral infection can elicit viral-specific memory T cells that cross-react with allo-MHC capable of driving allograft rejection in mice. Despite these advances, and despite their critical role in transplant rejection, a systematic study of allo-reactive memory T cells, their specificities, and the role of cross-reactivity with viral antigens has not been performed. Methods: Here, we established a model to identify, isolate, and characterize cross-reactive T cells using Nur77 reporter mice (C57BL/6 background), which transiently express GFP exclusively upon TCR engagement. We infected Nur77 mice with lymphocytic choriomeningitis virus (LCMV-Armstrong) to generate a robust memory compartment, where quiescent LCMV-specific memory CD8+ T cells could be readily tracked with MHC tetramer staining. Then, we transplanted LCMV immune mice with allogeneic hearts and monitored expression of GFP within MHC-tetramer defined viral-specific T cells as an indicator of their ability to cross-react with alloantigens. Results: Strikingly, prior LCMV infection significantly increased the kinetics and magnitude of rejection as well as CD8+ T cell recruitment into allogeneic, but not syngeneic, transplanted hearts, relative to non-infected controls. Interestingly, as early as day 1 after allogeneic heart transplant an average of ~8% of MHC-tetramer+ CD8+ T cells expressed GFP, in contrast to syngeneic heart transplants, where the frequency of viral-specific CD8+ T cells that were GFP+ was <1%. These data show that a significant percentage of viral-specific memory CD8+ T cells expressed T cell receptors that also recognized alloantigens in vivo. Notably, the frequency of cross-reactive CD8+ T cells differed depending upon the viral epitope. Further, TCR sequences derived from cross-reactive T cells harbored distinctive motifs that may provide insight into cross-reactivity and allo-specificity. Discussion: In sum, we have established a mouse model to track viral-specific, allo-specific, and cross-reactive T cells; revealing that prior infection elicits substantial numbers of viral-specific T cells that cross-react to alloantigen, respond very early after transplant, and may promote rapid rejection.


Assuntos
Linfócitos T CD8-Positivos , Viroses , Camundongos , Animais , Camundongos Endogâmicos C57BL , Vírus da Coriomeningite Linfocítica , Receptores de Antígenos de Linfócitos T/genética , Isoantígenos , Aloenxertos
4.
J Clin Invest ; 133(14)2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37227784

RESUMO

Bulk analysis of renal allograft biopsies (rBx) identified RNA transcripts associated with acute cellular rejection (ACR); however, these lacked cellular context critical to mechanistic understanding of how rejection occurs despite immunosuppression (IS). We performed combined single-cell RNA transcriptomic and TCR-α/ß sequencing on rBx from patients with ACR under differing IS drugs: tacrolimus, iscalimab, and belatacept. We found distinct CD8+ T cell phenotypes (e.g., effector, memory, exhausted) depending upon IS type, particularly within expanded CD8+ T cell clonotypes (CD8EXP). Gene expression of CD8EXP identified therapeutic targets that were influenced by IS type. TCR analysis revealed a highly restricted number of CD8EXP, independent of HLA mismatch or IS type. Subcloning of TCR-α/ß cDNAs from CD8EXP into Jurkat 76 cells (TCR-/-) conferred alloreactivity by mixed lymphocyte reaction. Analysis of sequential rBx samples revealed persistence of CD8EXP that decreased, but were not eliminated, after successful antirejection therapy. In contrast, CD8EXP were maintained in treatment-refractory rejection. Finally, most rBx-derived CD8EXP were also observed in matching urine samples, providing precedent for using urine-derived CD8EXP as a surrogate for those found in the rejecting allograft. Overall, our data define the clonal CD8+ T cell response to ACR, paving the next steps for improving detection, assessment, and treatment of rejection.


Assuntos
Transplante de Rim , Transcriptoma , Receptores de Antígenos de Linfócitos T alfa-beta/genética , RNA , Aloenxertos , Rejeição de Enxerto/genética
5.
bioRxiv ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36798151

RESUMO

Bulk analysis of renal allograft biopsies (rBx) identified RNA transcripts associated with acute cellular rejection (ACR); however, these lacked cellular context critical to mechanistic understanding. We performed combined single cell RNA transcriptomic and TCRα/ß sequencing on rBx from patients with ACR under differing immunosuppression (IS): tacrolimus, iscalimab, and belatacept. TCR analysis revealed a highly restricted CD8 + T cell clonal expansion (CD8 EXP ), independent of HLA mismatch or IS type. Subcloning of TCRα/ß cDNAs from CD8 EXP into Jurkat76 cells (TCR -/- ) conferred alloreactivity by mixed lymphocyte reaction. scRNAseq analysis of CD8 EXP revealed effector, memory, and exhausted phenotypes that were influenced by IS type. Successful anti-rejection treatment decreased, but did not eliminate, CD8 EXP , while CD8 EXP were maintained during treatment-refractory rejection. Finally, most rBx-derived CD8 EXP were also observed in matching urine samples. Overall, our data define the clonal CD8 + T cell response to ACR, providing novel insights to improve detection, assessment, and treatment of rejection.

6.
Sci Transl Med ; 14(675): eabi4354, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36516265

RESUMO

Immune-mediated bile duct epithelial injury and toxicity of retained hydrophobic bile acids drive disease progression in fibrosing cholangiopathies such as biliary atresia or primary sclerosing cholangitis. Emerging therapies include pharmacological agonists to farnesoid X receptor (FXR), the master regulator of hepatic synthesis, excretion, and intestinal reuptake of bile acids. Unraveling the mechanisms of action of pharmacological FXR agonists in the treatment of sclerosing cholangitis (SC), we found that intestinally restricted FXR activation effectively reduced bile acid pool size but did not improve the SC phenotype in MDR2-/- mice. In contrast, systemic FXR activation not only lowered bile acid synthesis but also suppressed proinflammatory cytokine production by liver-infiltrating inflammatory cells and blocked progression of hepatobiliary injury. The hepatoprotective activity was linked to suppressed production of IL1ß and TNFα by hepatic macrophages and inhibition of TH1/TH17 lymphocyte polarization. Deletion of FXR in myeloid cells caused aberrant TH1 and TH17 lymphocyte responses in diethoxycarbonyl-1,4-dihydrocollidine-induced SC and rendered these mice resistant to the anti-inflammatory and liver protective effects of systemic FXR agonist treatment. Pharmacological FXR activation reduced IL1ß and IFNγ production by liver- and blood-derived mononuclear cells from patients with fibrosing cholangiopathies. In conclusion, we demonstrate FXR to control the macrophage-TH1/17 axis, which is critically important for the progression of SC. Hepatic macrophages are cellular targets of systemic FXR agonist therapy for cholestatic liver disease.


Assuntos
Colangite Esclerosante , Camundongos , Animais , Colangite Esclerosante/tratamento farmacológico , Linfócitos T , Ácidos e Sais Biliares , Fígado , Macrófagos
7.
Front Immunol ; 12: 750754, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721421

RESUMO

Solid organ transplant recipients require long-term immunosuppression for prevention of rejection. Calcineurin inhibitor (CNI)-based immunosuppressive regimens have remained the primary means for immunosuppression for four decades now, yet little is known about their effects on graft resident and infiltrating immune cell populations. Similarly, the understanding of rejection biology under specific types of immunosuppression remains to be defined. Furthermore, development of innovative, rationally designed targeted therapeutics for mitigating or preventing rejection requires a fundamental understanding of the immunobiology that underlies the rejection process. The established use of microarray technologies in transplantation has provided great insight into gene transcripts associated with allograft rejection but does not characterize rejection on a single cell level. Therefore, the development of novel genomics tools, such as single cell sequencing techniques, combined with powerful bioinformatics approaches, has enabled characterization of immune processes at the single cell level. This can provide profound insights into the rejection process, including identification of resident and infiltrating cell transcriptomes, cell-cell interactions, and T cell receptor α/ß repertoires. In this review, we discuss genomic analysis techniques, including microarray, bulk RNAseq (bulkSeq), single-cell RNAseq (scRNAseq), and spatial transcriptomic (ST) techniques, including considerations of their benefits and limitations. Further, other techniques, such as chromatin analysis via assay for transposase-accessible chromatin sequencing (ATACseq), bioinformatic regulatory network analyses, and protein-based approaches are also examined. Application of these tools will play a crucial role in redefining transplant rejection with single cell resolution and likely aid in the development of future immunomodulatory therapies in solid organ transplantation.


Assuntos
Rejeição de Enxerto/genética , Análise de Célula Única , Aloenxertos , Animais , Perfilação da Expressão Gênica , Genômica , Humanos , Análise de Sequência de RNA
8.
Gastroenterology ; 161(1): 287-300.e16, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33771553

RESUMO

BACKGROUND & AIMS: The etiology of cholestasis remains unknown in many children. We surveyed the genome of children with chronic cholestasis for variants in genes not previously associated with liver disease and validated their biological relevance in zebrafish and murine models. METHOD: Whole-exome (n = 4) and candidate gene sequencing (n = 89) was completed on 93 children with cholestasis and normal serum γ-glutamyl transferase (GGT) levels without pathogenic variants in genes known to cause low GGT cholestasis such as ABCB11 or ATP8B1. CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 genome editing was used to induce frameshift pathogenic variants in the candidate gene in zebrafish and mice. RESULTS: In a 1-year-old female patient with normal GGT cholestasis and bile duct paucity, we identified a homozygous truncating pathogenic variant (c.198delA, p.Gly67Alafs∗6) in the ABCC12 gene (NM_033226). Five additional rare ABCC12 variants, including a pathogenic one, were detected in our cohort. ABCC12 encodes multidrug resistance-associated protein 9 (MRP9) that belongs to the adenosine 5'-triphosphate-binding cassette transporter C family with unknown function and no previous implication in liver disease. Immunohistochemistry and Western blotting revealed conserved MRP9 protein expression in the bile ducts in human, mouse, and zebrafish. Zebrafish abcc12-null mutants were prone to cholangiocyte apoptosis, which caused progressive bile duct loss during the juvenile stage. MRP9-deficient mice had fewer well-formed interlobular bile ducts and higher serum alkaline phosphatase levels compared with wild-type mice. They exhibited aggravated cholangiocyte apoptosis, hyperbilirubinemia, and liver fibrosis upon cholic acid challenge. CONCLUSIONS: Our work connects MRP9 with bile duct homeostasis and cholestatic liver disease for the first time. It identifies a potential therapeutic target to attenuate bile acid-induced cholangiocyte injury.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Ductos Biliares Intra-Hepáticos/patologia , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/patologia , Mutação , Proteínas de Peixe-Zebra/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Apoptose , Ductos Biliares Intra-Hepáticos/metabolismo , Estudos de Casos e Controles , Colestase Intra-Hepática/metabolismo , Doença Crônica , Feminino , Edição de Genes , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Lactente , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Sequenciamento do Exoma , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
9.
Transplantation ; 104(5): 1058-1069, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31415033

RESUMO

BACKGROUND: Renal allograft rejection is more frequent under belatacept-based, compared with tacrolimus-based, immunosuppression. We studied kidney transplant recipients experiencing rejection under belatacept-based early corticosteroid withdrawal following T-cell-depleting induction in a recent randomized trial (Belatacept-based Early Steroid Withdrawal Trial, clinicaltrials.gov NCT01729494) to determine mechanisms of rejection and treatment. METHODS: Peripheral mononuclear cells, serum creatinine levels, and renal biopsies were collected from 8 patients undergoing belatacept-refractory rejection (BRR). We used flow cytometry, histology, and immunofluorescence to characterize CD8 effector memory T cell (TEM) populations in the periphery and graft before and after mammalian target of rapamycin (mTOR) inhibition. RESULTS: Here, we found that patients with BRR did not respond to standard antirejection therapy and had a substantial increase in alloreactive CD8 T cells with a CD28/DR/CD38/CD45RO TEM. These cells had increased activation of the mTOR pathway, as assessed by phosphorylated ribosomal protein S6 expression. Notably, everolimus (an mTOR inhibitor) treatment of patients with BRR halted the in vivo proliferation of TEM cells and their ex vivo alloreactivity and resulted in their significant reduction in the peripheral blood. The frequency of circulating FoxP3 regulatory T cells was not altered. Importantly, everolimus led to rapid resolution of rejection as confirmed by histology. CONCLUSIONS: Thus, while prior work has shown that concomitant belatacept + mTOR inhibitor therapy is effective for maintenance immunosuppression, our preliminary data suggest that everolimus may provide an available means for effecting "rescue" therapy for rejections occurring under belatacept that are refractory to traditional antirejection therapy with corticosteroids and polyclonal antilymphocyte globulin.


Assuntos
Abatacepte/farmacologia , Linfócitos T CD8-Positivos/imunologia , Rejeição de Enxerto/tratamento farmacológico , Memória Imunológica/efeitos dos fármacos , Transplante de Rim , Linfócitos T Reguladores/imunologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Biópsia , Antígenos CD28/imunologia , Feminino , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/patologia , Sobrevivência de Enxerto , Humanos , Terapia de Imunossupressão/métodos , Imunossupressores/farmacologia , Rim/patologia , Masculino , Pessoa de Meia-Idade , Sirolimo/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Tacrolimo/farmacologia , Transplante Homólogo , Resultado do Tratamento
10.
Hepatology ; 68(5): 1905-1921, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29698570

RESUMO

In the multidrug resistance protein 2 (Mdr2)-/- mouse model, low phospholipid bile instigates biliary epithelial injury, sterile inflammation, and fibrosis, thereby recapitulating disease mechanisms implicated in biliary atresia (BA) and primary sclerosing cholangitis. We hypothesize that T lymphocytes contribute to the biliary injury and fibrosis in murine sclerosing cholangitis (SC) and that they are susceptible to suppression by regulatory T cells (Tregs). In juvenile Mdr2-/- mice, intrahepatic CD8+ lymphocytes were expanded, and contraction of intrahepatic Tregs coincided with rising serum alanine transferase and alkaline phosphatase (ALP) levels between days 14-30 of life. Antibody-mediated depletion of intrahepatic CD8+ lymphocytes during that time reduced ALP levels and the expression of osteopontin (Opn), a pro-fibrogenic cytokine. Depletion of intrahepatic Tregs with anti-CD25 antibody between days 7-30 increased intrahepatic CD8+ T cells, Opn expression, and fibrosis. Conversely, expansion of intrahepatic Tregs with interleukin 2/anti-interleukin 2 immune complexes (IL-2c) downregulated hepatic expression of Opn and Tnf, reduced frequency of intrahepatic CD8+ lymphocytes, and diminished biliary injury and fibrosis. Treatment with IL-2c upregulated hepatic Treg expression of CD39, an ectonucleotidase capable of hydrolyzing pro-inflammatory adenosine triphosphate. In vitro, Tregs expressing CD39 suppressed the proliferation of hepatic CD8+ lymphocytes from Mdr2-/- mice more efficiently than those lacking CD39. In infants with BA, infiltration of interlobular bile ducts with CD8+ cells was associated with biliary expression of Opn and its transcription was negatively correlated with mRNA expression of Treg-associated genes. Conclusion: Hepatic CD8+ T lymphocytes drive biliary injury and fibrosis in murine SC. Their proliferation is controlled by hepatic Tregs through the purinergic pathway, which is responsive to IL-2c, suggesting that Treg-directed low-dose Il-2 treatment may be considered as therapy for SC.


Assuntos
Ductos Biliares/patologia , Colangite Esclerosante/imunologia , Interleucina-2/imunologia , Fígado/imunologia , Linfócitos T Reguladores/imunologia , Animais , Técnicas de Cultura de Células , Modelos Animais de Doenças , Feminino , Fibrose/imunologia , Fibrose/patologia , Imunofluorescência , Humanos , Lactente , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Análise em Microsséries
11.
Pediatr Res ; 82(1): 122-132, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28355206

RESUMO

BackgroundHeterozygous mutations in the gene ABCB4, encoding the phospholipid floppase MDR3 (Mdr2 in mice), are associated with various chronic liver diseases. Here we hypothesize that reduced ABCB4 expression predisposes to extrahepatic biliary atresia (EHBA).MethodsLivers from neonatal wild-type (wt) and heterozygous Mdr2-deficient mice were subjected to mass spectrometry-based lipidomics and RNA sequencing studies. Following postnatal infection with rhesus rotavirus (RRV), liver immune responses and EHBA phenotype were assessed. Hepatic microarray data from 40 infants with EHBA were mined for expression levels of ABCB4.ResultsPhosphatidylcholine (PC) and phosphatidylethanolamine (PE) were increased, whereas the PC/PE ratio was decreased in neonatal Mdr2+/- mice compared with wt mice. Following RRV challenge, hepatic expression of IFNγ and infiltration with CD8+ and NK+ lymphocytes were increased in Mdr2+/- mice. Plasma total bilirubin levels and prevalence of complete ductal obstruction were higher in these mice. In infants with EHBA, hepatic gene expression of ABCB4 was downregulated in those with an inflammatory compared with a fibrosing molecular phenotype.ConclusionDecreased expression of ABCB4 causes dysregulation in (phospho)lipid homeostasis, and predisposes to aberrant pro-inflammatory lymphocyte responses and an aggravated phenotype of EHBA in neonatal mice. Downregulated ABCB4 is associated with an inflammatory transcriptome signature in infants with EHBA.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Colestase/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Animais Recém-Nascidos , Atresia Biliar/genética , Feminino , Heterozigoto , Homeostase , Humanos , Lactente , Inflamação/metabolismo , Leucócitos Mononucleares/citologia , Espectrometria de Massas , Camundongos , Mutação , Fenótipo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Transcriptoma , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
12.
Hepatology ; 63(2): 512-23, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26172874

RESUMO

UNLABELLED: Deficiency of multidrug resistance 2 (mdr2), a canalicular phospholipid floppase, leads to excretion of low-phospholipid "toxic" bile causing progressive cholestasis. We hypothesize that pharmacological inhibition of the ileal, apical sodium-dependent bile acid transporter (ASBT), blocks progression of sclerosing cholangitis in mdr2(-/-) mice. Thirty-day-old, female mdr2(-/-) mice were fed high-fat chow containing 0.006% SC-435, a minimally absorbed, potent inhibitor of ASBT, providing, on average, 11 mg/kg/day of compound. Bile acids (BAs) and phospholipids were measured by mass spectrometry. Compared with untreated mdr2(-/-) mice, SC-435 treatment for 14 days increased fecal BA excretion by 8-fold, lowered total BA concentration in liver by 65%, reduced total BA and individual hydrophobic BA concentrations in serum by >98%, and decreased plasma alanine aminotransferase, total bilirubin, and serum alkaline phosphatase levels by 86%, 93%, and 55%, respectively. Liver histology of sclerosing cholangitis improved, and extent of fibrosis decreased concomitant with reduction of hepatic profibrogenic gene expression. Biliary BA concentrations significantly decreased and phospholipids remained low and unchanged with treatment. The phosphatidylcholine (PC)/BA ratio in treated mice corrected toward a ratio of 0.28 found in wild-type mice, indicating decreased bile toxicity. Hepatic RNA sequencing studies revealed up-regulation of putative anti-inflammatory and antifibrogenic genes, including Ppara and Igf1, and down-regulation of several proinflammatory genes, including Ccl2 and Lcn2, implicated in leukocyte recruitment. Flow cytometric analysis revealed significant reduction of frequencies of hepatic CD11b(+) F4/80(+) Kupffer cells and CD11b(+) Gr1(+) neutrophils, accompanied by expansion of anti-inflammatory Ly6C(-) monocytes in treated mdr2(-/-) mice. CONCLUSION: Inhibition of ASBT reduces BA pool size and retention of hydrophobic BA, favorably alters the biliary PC/BA ratio, profoundly changes the hepatic transcriptome, attenuates recruitment of leukocytes, and abrogates progression of murine sclerosing cholangitis.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , Bile/química , Colangite Esclerosante/prevenção & controle , Óxidos N-Cíclicos/uso terapêutico , Progressão da Doença , Transportadores de Ânions Orgânicos Dependentes de Sódio/antagonistas & inibidores , Simportadores/antagonistas & inibidores , Tropanos/uso terapêutico , Animais , Óxidos N-Cíclicos/farmacologia , Feminino , Camundongos , Camundongos Knockout , Tropanos/farmacologia , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA