Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(3): 4226-4233, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36633961

RESUMO

Inducing clear ferroelectricity in the quantum paraelectric SrTiO3 is important for triggering methods to discover hidden phases in condensed matter physics. Several methods such as isotope substitution and freestanding membranes could introduce ferroelectricity in SrTiO3 toward nonvolatile memory applications. However, the stable transformation from quantum paraelectric SrTiO3 to ferroelectricity SrTiO3 at room temperature still remains challenging. Here, we used multiple nano-engineering in (SrTiO3)0.65/(CeO2)0.35 films to achieve an emergent room-temperature ferroelectricity. It is shown that the CeO2 nanocolumns impose large out-of-plane strains and induce Sr/O deficiency in the SrTiO3 matrix to form a clear tetragonal structure, which leads to an apparent room-temperature ferroelectric polarization up to 2.5 µC/cm2. In collaboration with density functional theory calculations, it is proposed that the compressive strains combined with elemental deficiency give rise to local redistribution of charge density and orbital order, which induce emergent tetragonality of the strained SrTiO3. Our work thus paves a pathway for architecting functional systems in perovskite oxides using a multiple nano-design.

2.
Adv Mater ; 34(32): e2106396, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35730916

RESUMO

Manipulating ferroic orders and realizing their coupling in multiferroics at room temperature are promising for designing future multifunctional devices. Single external stimulation has been extensively proved to demonstrate the ability of ferroelastic switching in multiferroic oxides, which is crucial to bridge the ferroelectricity and magnetism. However, it is still challenging to directly realize multi-field-driven magnetoelectric coupling in multiferroic oxides as potential multifunctional electrical devices. Here, novel magneto-electric-optical coupling in multiferroic BiFeO3 -based thin films at room temperature mediated by deterministic ferroelastic switching using piezoresponse/magnetic force microscopy and aberration-corrected transmission electron microscopy are shown. Reversible photoinduced ferroelastic switching exhibiting magnetoelectric responses is confirmed in BiFeO3 -based films, which works at flexible strain states. This work directly demonstrates room-temperature magneto-electric-optical coupling in multiferroic films, which provides a framework for designing potential multi-field-driven magnetoelectric devices such as energy conservation memories.

3.
ACS Appl Mater Interfaces ; 14(7): 9724-9733, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138804

RESUMO

Ferroelectric ultrathin films have great potential in electronic devices and device miniaturization with the innovation of technology. In the process of product commercialization, understanding the domain evolution and topological properties of ferroelectrics is a prerequisite for high-density storage devices. In this work, a series of ultrathin PbTiO3 (PTO) films with varying thicknesses were deposited on cubic KTaO3 substrates by pulsed laser deposition and were researched by Cs-corrected scanning transmission electron microscopy (STEM), reciprocal space mapping (RSM), and piezoresponse force microscopy (PFM). RSM experiments indicate the existence of a/c domains and show that the lattice constant varies continuously, which is further confirmed by atomic-scale STEM imaging. Diffraction contrast analysis clarifies that with the decrease in PTO film thickness, the critical thickness for the formation of a/c domains could be missing. When the thickness of PTO films is less than 6 nm, the domain configurations in the ultrathin PTO films are the coexistence of a/c domains and bowl-like topological structures, where the latter ones were identified as convergent and divergent types of meron. In addition, abundant 90° charged domain walls in these ultrathin PTO films were identified. PFM studies reveal clear ferroelectric properties for these ultrathin PTO films. These results may shed light on further understanding the domain evolution and topological properties in ultrathin ferroelectric PTO films.

4.
J Nanosci Nanotechnol ; 21(3): 1636-1640, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33404427

RESUMO

Fe4N nanopowders were prepared using specially-made high-pressure gas-solid reaction equipment, and their composition, morphology, and magnetic properties were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM). An average particle size of 35 nm was obtained at 0.4 MPa, an ammonia-to-hydrogen ratio of 3:1, 623 K, in an ammonia solution for 2 h. The hysteresis loop displayed a thin and narrow shape at 673 K during VSM tests. The saturation magnetization (Ms) reached 169.80 emu/g.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA