RESUMO
To address rotor imbalance and misalignment in oil transfer pumps, an innovative diagnostic framework using Residual Network (ResNet) is proposed. The model incorporates advanced signal processing algorithms and strategic sensor placement to enhance diagnostic efficacy. A fault simulation test rig captured vibration signals from eight key measurement points on the pump. One-dimensional and multi-dimensional signal processing techniques generated comprehensive datasets for training and validating the model. Sensor placement optimization, focusing on the bearing seat's axial direction, inlet flange's vertical direction, and outlet flange's axial direction, increased rotor fault sensitivity. Time-frequency data processed via Short-Time Fourier Transform (STFT) achieved the highest diagnostic accuracy, surpassing 98 %. This study highlights the importance of optimal signal processing and precise sensor placement in improving the accuracy of diagnosing rotor faults in oil transfer pumps, thus enhancing the operational reliability and efficiency of energy transportation systems.
RESUMO
Thrombocythemia (ET), polycythemia vera (PV), primary myelofibrosis (PMF), prefibrotic/early (pre-PMF), and overt fibrotic PMF (overt PMF) are classical Philadelphia-Negative (Ph-negative) myeloproliferative neoplasms (MPNs). Differentiating between these types based on morphology and molecular markers is challenging. This study aims to clarify the application of flow cytometry in the diagnosis and differential diagnosis of classical MPNs. This study retrospectively analyzed the immunophenotypes, clinical characteristics, and laboratory findings of 211 Ph-negative MPN patients, including ET, PV, pre-PMF, overt PMF, and 47 controls. Compared to ET and PV, PMF differed in white blood cells, hemoglobin, blast cells in the peripheral blood, abnormal karyotype, and WT1 gene expression. PMF also differed from controls in CD34+ cells, granulocyte phenotype, monocyte phenotype, percentage of plasma cells, and dendritic cells. Notably, the PMF group had a significantly lower plasma cell percentage compared with other groups. A lasso and random forest model select five variables (CD34+CD19+cells and CD34+CD38- cells on CD34+cells, CD13dim+CD11b- cells in granulocytes, CD38str+CD19+/-plasma, and CD123+HLA-DR-basophils), which identify PMF with a sensitivity and specificity of 90%. Simultaneously, a classification and regression tree model was constructed using the percentage of CD34+CD38- on CD34+ cells and platelet counts to distinguish between ET and pre-PMF, with accuracies of 94.3% and 83.9%, respectively. Flow immunophenotyping aids in diagnosing PMF and differentiating between ET and PV. It also helps distinguish pre-PMF from ET and guides treatment decisions.
Assuntos
Citometria de Fluxo , Imunofenotipagem , Mielofibrose Primária , Humanos , Mielofibrose Primária/diagnóstico , Mielofibrose Primária/patologia , Mielofibrose Primária/sangue , Mielofibrose Primária/genética , Citometria de Fluxo/métodos , Pessoa de Meia-Idade , Imunofenotipagem/métodos , Feminino , Masculino , Idoso , Adulto , Estudos Retrospectivos , Policitemia Vera/diagnóstico , Policitemia Vera/patologia , Policitemia Vera/genética , Policitemia Vera/sangue , Idoso de 80 Anos ou mais , Diagnóstico Diferencial , Algoritmo Florestas AleatóriasRESUMO
BACKGROUND: ZNF384 rearrangement has been recently identified as a new subtype of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, comprehensive studies clarifying immunophenotypic features and discriminating them from non-ZNF384 in adult BCP-ALL remain scarce to date. METHODS: Flow cytometric assessments were retrospectively performed in 43 patients with ZNF384 rearrangement, 45 with BCR-ABL1, 29 with KMT2A rearrangement and 44 with other BCP-ALL in the analysis cohort. RESULTS: CD33- and CD13-positive frequencies were significantly higher in patients with ZNF384 rearrangement than in those with non-ZNF384; however, no significant difference was observed in CD10- and CD123-positive frequencies. Analysis of antigen-positive cell proportion and median fluorescence intensity (MFI) further indicated that patients with ZNF384 rearrangement had significantly lower CD10 and higher CD33, CD13, and CD123 proportion and MFI. However, compared with KMT2A rearrangement, the CD10 expression in patients with ZNF384 rearrangement was higher, with the median percentage and MFI of 36.16 (3.63-94.79)% versus 4.53 (0.03-21.00)%, and 4.50 (0.86-32.26) versus 2.06 (0.87-4.04), respectively (p < 0.0001). Furthermore, compared with BCR-ABL1 and other BCP-ALL, ZNF384 rearrangement had significantly higher CD33 and CD13 proportion and MFI (p < 0.0001 and p < 0.05, respectively). In addition, higher CD123 proportion and MFI in ZNF384 rearrangement than those in the other three groups were reported for the first time (p < 0.01). A flow cytometry scoring system, including CD10%, CD33MFI, CD13%, and CD123MFI, was proposed and verified to predict ZNF384 rearrangement with high sensitivity and specificity, that is, 76.74% and 91.53% in the analysis and 87.50% and 91.30% in the validation cohort. CONCLUSIONS: The multiparameter immunophenotypic scoring system could suggest ZNF384 rearrangement.
Assuntos
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Aberrações Cromossômicas , Citometria de Fluxo , Humanos , Imunofenotipagem , Subunidade alfa de Receptor de Interleucina-3 , Neprilisina , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Estudos Retrospectivos , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genéticaRESUMO
Early brain injury (EBI) after aneurysmal subarachnoid hemorrhage (SAH) contributes to high morbidity and mortality. Although it is well recognized that acute neuroinflammation reaction is one of the most important triggers of EBI, pharmacotherapy proved to be clinically effective against the initiating of neuroinflammation after SAH is lacking. The resident microglia and infiltrated peripheral monocyte are two main types of immune cells in central nervous system (CNS) and control the inflammation process in brain after SAH. But the time course and relative contributions of these two immune cell activations after SAH are unknown. The p75 neurotrophin receptor (p75NTR), member of TNF receptor superfamily, expresses on infiltrated peripheral monocytes and suppresses their proinflammatory action after brain insults. But the p75NTR expression on resident microglia in vivo is rarely explored and their function keeps elusive. Therefore, we designed this study to investigate the time course of resident microglia activation and peripheral monocyte infiltration, as well as the microglial expression of p75NTR by using CX3C-chemokine receptor 1 (Cx3cr1) and chemokine receptor 2 (Ccr2) double transgenic mice (Cx3cr1GFP/+Ccr2RFP/+) after SAH. The results showed activated microglia was observed in cortex as early as 24 h and further increased at 48 and 72 h post SAH, while the infiltrated monocyte was not found until 72h. In addition, activated microglia expressed p75NTR acutely and p75NTR specific antagonist TAT-Pep5 significantly reduced microglia activation, neuroinflammation and EBI from 24 to 72 h. Together, these data suggest that the early neuroinflammation reaction might be initiated and intensified mainly by resident microglia rather than infiltrated monocyte at least in the first 48 h after SAH and p75NTR blockading by TAT-Pep5P might alleviate EBI through mediating microglial activation.