Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(8): e0305233, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39133675

RESUMO

INTRODUCTION: Non-steroidal anti-inflammatory drugs (NSAIDs) are currently the most widely used anti-inflammatory medications, but their long-term use can cause damage to the gastrointestinal tract(GIT). One of the risk factors for GIT injury is exposure to a high-altitude hypoxic environment, which can lead to damage to the intestinal mucosal barrier. Taking NSAIDs in a high-altitude hypoxic environment can exacerbate GIT injury and impact gut microbiota. The aim of this study is to investigate the mechanisms by which resveratrol (RSV) intervention alleviates NSAID-induced intestinal injury in a high-altitude hypoxic environment, as well as its role in regulating gut microbiota. METHODS: Aspirin was administered orally to rats to construct a rat model of intestinal injury induced by NSAIDs. Following the induction of intestinal injury, rats were administered RSV by gavage, and the expression levels of TLR4, NF-κB,IκB as well as Zonula Occludens-1 (ZO-1) and Occludin proteins in the different treatment groups were assessed via Western blot. Furthermore, the expression of the inflammatory factors IL-10, IL-1ß, and TNF-α was evaluated using Elisa.16sRNA sequencing was employed to investigate alterations in the gut microbiota. RESULTS: The HCk group showed elevated expression of TLR4/NF-κB/IκB pathway proteins, increased expression of pro-inflammatory factors IL-1ß and TNF-α, decreased expression of the anti-inflammatory factor IL-10, and expression of intestinal mucosal barrier proteins ZO-1 and Occludin. The administration of NSAIDs drugs in the plateau hypoxic environment exacerbates intestinal inflammation and damage to the intestinal mucosal barrier. After treatment with RSV intervention, the expression of TLR4/NF-κB/IκB signaling pathway proteins would be reduced, thereby lowering the expression of inflammatory factors in the HAsp group. The results of HE staining directly show the damage to the intestines and the repair of intestinal mucosa after RSV intervention. 16sRNA sequencing results show significant differences (P<0.05) in Ruminococcus, Facklamia, Parasutterella, Jeotgalicoccus, Coprococcus, and Psychrobacter between the HCk group and the Ck group. Compared to the HCk group, the HAsp group shows significant differences (P<0.05) in Facklamia, Jeotgalicoccus, Roseburia, Psychrobacter, and Alloprevotella. After RSV intervention, Clostridium_sensu_stricto bacteria significantly increase compared to the HAsp group. CONCLUSION: Resveratrol can attenuate intestinal damage caused by the administration of NSAIDs at high altitude in hypoxic environments by modulating the TLR4/NF-κB/IκB signaling pathway and gut microbiota composition.


Assuntos
Altitude , Anti-Inflamatórios não Esteroides , Microbioma Gastrointestinal , NF-kappa B , Ratos Sprague-Dawley , Resveratrol , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Resveratrol/farmacologia , Receptor 4 Toll-Like/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , NF-kappa B/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Ratos , Masculino , Transdução de Sinais/efeitos dos fármacos , Hipóxia/complicações , Hipóxia/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Proteínas I-kappa B/metabolismo , Aspirina/farmacologia
2.
Int J Biol Macromol ; 277(Pt 4): 134479, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39102918

RESUMO

Poisonous histamine is accumulated in stale meat and fermented foods. The rapid and stable detection of histamine is essential for food safety. Herein, a ratiometric fluorometric method for histamine detection was designed through in situ preparing double-stranded DNA­copper nanoclusters (dsDNA-Cu NCs) stained with 4',6-diamidino-2-phenylindole (DAPI). dsDNA-Cu NCs with red emission were rapidly synthesized via mixing Cu2+, ascorbate and dsDNA at room temperature for 5 min. When DAPI was added during preparation, DAPI coordinated with the Cu element accompanied by the quenched red emission of dsDNA-Cu NCs, and DAPI bound to dsDNA together with the enhanced blue emission of DAPI. Upon adding DAPI and histamine simultaneously, the coordination of histamine with the Cu element further decreased the red emission of dsDNA-Cu NCs, and drove the movement of DAPI from the Cu element to dsDNA along with the enhanced blue emission of DAPI. Significantly, ratiometric fluorescence was insensitive to variations in instrument and environment, causing stable measurement. Meanwhile, in situ synthesis integrated probe preparation with analyte detection, reducing time consumption. Additionally, this method quantified histamine in the concentration range of 7-50 µM with a detection limit of 3.6 µM. It was applied to determining histamine in food with satisfactory accuracy and precision.

3.
Adv Sci (Weinh) ; : e2403865, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965796

RESUMO

In the quest to enhance Zn-air batteries (ZABs) for operating across a wide spectrum of temperatures, synthesizing robust oxygen electrocatalysts is paramount. Conventional strategies focusing on orbital hybridization of d-d and p-d aim to moderate the excessive interaction between the d-band of the transition metal active site and oxygen intermediate, yet often yield suboptimal performance. Herein, an innovative s-block metal modulation is reported to refine the electronic structure and catalytic behavior of Co─NC catalysts. Employing density functional theory (DFT) calculations, it is revealed that incorporating Mg markedly depresses the d-band center of Co sites, thereby fine-tuning the adsorption energy of the oxygen reduction reaction (ORR) intermediate. Consequently, the Mg-modified Co─NC catalyst (MgCo─NC) unveils remarkable intrinsic ORR activity with a significantly reduced activation energy (Ea) of 10.0 kJ mol-1, outstripping the performance of both Co─NC (17.6 kJ mol-1), benchmark Pt/C (15.9 kJ mol-1), and many recent reports. Moreover, ZABs outfitted with the finely tuned Mg0.1Co0.9─NC realize a formidable power density of 157.0 mW cm-2, paired with an extremely long cycle life of 1700 h, and an exceptionally minimal voltage gap decay rate of 0.006 mV h-1. Further, the Mg0.1Co0.9─NC-based flexible ZAB presents a mere 2% specific capacity degradation when the temperature fluctuates from 25 to -20 °C, underscoring its robustness and suitability for practical deployment in diverse environmental conditions.

4.
Heliyon ; 10(13): e33669, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39040386

RESUMO

The current flood forecasting models heavily rely on historical measured data, which is often insufficient for robust predictions due to practical challenges such as high measurement costs and data scarcity. This study introduces a novel hybrid approach that synergistically combines the outputs of traditional physical-based models with historical data to train Long Short-Term Memory (LSTM) networks. Specifically, the NAM hydrological model and the HD hydraulic model are employed to simulate flood processes. Focusing on the Jinhua basin, a typical plains river area in China, this research evaluates the efficacy of LSTM models trained on measured, mixed, and simulated datasets. The LSTM architecture includes multiple layers, with optimized hyperparameters tailored for flood forecasting. Key performance indicators such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Peak-relative Error (PRE) are employed to assess the predictive accuracy of the models. The findings demonstrate that LSTM models trained on mixed datasets with a simulated-to-measured data ratio of less than 2:1 consistently achieve superior performance, exhibiting significantly lower RMSE and MAE values compared to models trained on mixed data with larger data ratios. This highlights the advantage of integrating measured and simulated data, leveraging the strengths of both data types to enhance model accuracy. Despite its advantages, the approach has limitations, including dependence on the quality of simulated data and potential computational complexity. However, the development of this hybrid model marks a significant advancement in flood forecasting, offering a promising solution to the challenges of computational efficiency and data scarcity. Potential applications of this approach include real-time flood prediction and risk management in other flood-prone regions, providing a robust framework for integrating diverse data sources to improve forecasting accuracy.

5.
Anticancer Drugs ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39079172

RESUMO

The tumor suppressor gene BRCA1 associated protein-1 (BAP1) is frequently mutated in renal cell carcinoma (RCC). BAP1 loss-of-function mutations are associated with poor survival outcomes. However, personalized therapy for BAP1-mutated RCC is currently not available. Previously, we found that BAP1 loss renders RCC cells more sensitive to bromodomain and extra-terminal (BET) inhibitors, as demonstrated in both cell culture and xenografted nude mice models. Here, we demonstrate that BAP1 loss in murine RCC cells enhances sensitivity to BET inhibitors in ectopic and orthotopic allograft models. While BAP1 deletion suppresses RCC cell survival in vitro, it does not impede tumor growth in immunocompetent murine models. Thus, the effect of BAP1 loss on the interactions between tumor cells and host microenvironment plays a predominant role in RCC growth, highlighting the importance of utilizing immunocompetent animal models to assess the efficacy of potential anticancer therapies. Mechanistically, BAP1 deletion compromises DNA repair capacity, rendering RCC cells more vulnerable to DNA damage induced by BET inhibitors. Our results indicate that BET inhibitors show promise as targeted therapy for BAP1-deficient RCC.

6.
Insects ; 15(7)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39057236

RESUMO

Insects' growth and development are highly dependent on energy supply, with sugar metabolism playing a pivotal role in maintaining homeostasis and regulating physiological processes. The present study investigated the effects of exendin-4, a glucagon-like peptide-1 receptor (GLP-1R) agonist, on the growth, development, glycolysis, and energy metabolism of fourth-instar larvae of the fall webworm, Hyphantria cunea. We determined the impact of exendin-4 on larval growth and nutritional indices, analyzed the responses of glycolytic and metabolic pathways, and revealed the underlying regulatory mechanisms. Exendin-4 treatment significantly decreased growth and nutritional indices, influenced the activity of digestive enzymes, and induced changes in metabolite profiles, particularly affecting energy substance metabolism. We observed an increase in the glycogen content and a decrease in glucose and trehalose levels in the hemolymph, suggesting a regulatory effect on blood sugar homeostasis. Furthermore, exendin-4 promoted glycolysis by enhancing the activities and expressions of key glycolytic enzymes, leading to an increase in pyruvate production. This was accompanied by a reduction in ATP levels and the activation of AMP-activated protein kinase (AMPK), which may underlie the growth arrest in larvae. Our findings provide novel insights into the effects of exendin-4 on insect responses from an energy metabolism perspective and may contribute to the development of GLP-1R agonists for pest management.

7.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(6): 592-598, 2024 Jun 15.
Artigo em Chinês | MEDLINE | ID: mdl-38926375

RESUMO

OBJECTIVES: To investigate the value of single-phase gonadotropin releasing hormone (GnRH) stimulation test in the diagnosis of central precocious puberty (CPP) in girls with different levels of body mass index (BMI). METHODS: A retrospective analysis was performed for the data of 760 girls with breast development before 7.5 years of age who attended the Third Affiliated Hospital of Zhengzhou University from January 2017 to August 2023. According to the results of GnRH stimulation test and clinical manifestations, they were divided into a CPP group (297 girls) and a non-CPP group (463 girls). According to the values of BMI, the girls were divided into a normal weight group (540 girls), an overweight group (116 girls), and an obese group (104 girls). The receiver operating characteristic (ROC) curve was used to investigate the value of single-phase GnRH stimulation test in the diagnosis of CPP in girls with different levels of BMI. RESULTS: Luteinizing hormone (LH)/follicle-stimulating hormone at 30 minutes after GnRH stimulation had an area under the curve (AUC) of 0.985 in the diagnosis of CPP, which was higher than the AUC at 0, 60, and 90 minutes (P<0.05). LH at 30 minutes had a similar diagnostic value to LH at 60 minutes (P>0.05). LH at 30 minutes was negatively correlated with BMI and BMI-Z value (P<0.05).The AUC for diagnosing CPP in normal weight, overweight, and obese girls at 30 minutes LH was 0.952, 0.965, and 0.954, respectively (P<0.05). CONCLUSIONS: The 30-minute GnRH stimulation test has a good value in the diagnosis of CPP in girls with different levels of BMI and is expected to replace the traditional GnRH stimulation test, but the influence of BMI on LH level should be taken seriously.


Assuntos
Índice de Massa Corporal , Hormônio Liberador de Gonadotropina , Hormônio Luteinizante , Puberdade Precoce , Humanos , Puberdade Precoce/diagnóstico , Puberdade Precoce/sangue , Feminino , Hormônio Liberador de Gonadotropina/sangue , Criança , Estudos Retrospectivos , Hormônio Luteinizante/sangue , Hormônio Foliculoestimulante/sangue , Curva ROC , Pré-Escolar
8.
J Fungi (Basel) ; 10(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38921375

RESUMO

Woodpeckers exhibit selectivity when choosing tree cavities for nest development in forest ecosystems, and fungi play a significant and important role in this ecological process. Therefore, there is a complex and intricate relationship between the various behaviors of woodpeckers and the occurrence of fungal species. Research into the complex bond between fungi and woodpeckers was undertaken to provide more information about this remarkable ecological relationship. Through the process of line transect sampling, woodpecker traces were searched for, and mist nets were set up to capture them. A total of 21 woodpeckers belonging to four species were captured. High-throughput sequencing of the ITS region was performed on fungal-conserved samples to enable an in-depth analysis of the fungal communities linked to the woodpeckers' nests. Members of Ascomycota were the most abundant in the samples, accounting for 91.96% of the total, demonstrating the importance of this group in the forest ecosystem of this station. The statistical results indicate significant differences in the fungal diversity carried by woodpeckers among the different groups. Species of Cladosporium were found to be the most prevalent of all the detected fungal genera, accounting for 49.3%. The top 15 most abundant genera were Cladosporium, Trichoderma, Beauveria, Epicococcum, Hypoxylon, Penicillium, Nigrospora, Aspergillus, Oidiodendron, Cercospora, Talaromyces, Phialemo-nium, Petriella, Cordyceps, and Sistotrema. The standard Bray-Curtis statistical technique was used in a hierarchical clustering analysis to compute inter-sample distances, allowing for the identification of patterns and correlations within the dataset. We discovered that in the grouped samples from woodpeckers, there were differences in the diversity of fungal communities carried by four woodpecker species, but the less dominant fungal species were still similar. The findings highlight the need to consider these diverse ecological linkages in woodpecker research and conservation efforts.

9.
Front Cell Infect Microbiol ; 14: 1390934, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812753

RESUMO

Avian colibacillosis (AC), caused by infection with Escherichia coli (E. coli), is a major threat to poultry health, food safety and public health, and results in high mortality and significant economic losses. Currently, new drugs are urgently needed to replace antibiotics due to the continuous emergence and increasing resistance of multidrug-resistant (MDR) strains of E. coli caused by the irrational use of antibiotics in agriculture and animal husbandry. In recent years, antimicrobial peptides (AMPs), which uniquely evolved to protect the host, have emerged as a leading alternative to antibiotics in clinical settings. CATH-2, a member of the antimicrobial cathelicidin peptide family, has been reported to have antibacterial activity. To enhance the antimicrobial potency and reduce the adverse effects on animals, we designed five novel AMPs, named C2-1, C2-2, C2-3, C2-4 and C2-5, based on chicken CATH-2, the secondary structures of these AMPs were consistently α-helical and had an altered net charge and hydrophobicity compared to those of the CATH-2 (1-15) sequences. Subsequently, the antimicrobial activities of CATH-2 (1-15) and five designed peptides against MDR E. coli were evaluated in vitro. Specifically, C2-2 showed excellent antimicrobial activity against either the ATCC standard strain or veterinary clinical isolates of MDR E. coli, with concentrations ranging from 2-8 µg/mL. Furthermore, C2-2 maintained its strong antibacterial efficacy under high temperature and saline conditions, demonstrating significant stability. Similarly, C2-2 retained a high level of safety with no significant hemolytic activity on chicken mature red blood cells or cytotoxicity on chicken kidney cells over the concentration range of 0-64 µg/mL. Moreover, the administration of C2-2 improved the survival rate and reduced the bacterial load in the heart, liver and spleen during MDR E. coli infection in chickens. Additionally, pathological damage to the heart, liver and intestine was prevented when MDR E. coli infected chickens were treated with C2-2. Together, our study showed that C2-2 may be a promising novel therapeutic agent for the treatment of MDR E. coli infections and AC.


Assuntos
Antibacterianos , Galinhas , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli , Escherichia coli , Doenças das Aves Domésticas , Animais , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/microbiologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Peptídeos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Catelicidinas
10.
Heliyon ; 10(6): e27833, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38560678

RESUMO

3-n-butylphthalide (NBP) contains one of the main active ingredients of celery seed. It has a series of pharmacological mechanisms, including reconstitution of microcirculation, protection of mitochondrial function, inhibition of oxidative stress, and inhibition of neuronal apoptosis. Based on the complex multi-targeting of NBP pharmacological mechanisms, the clinical applications of NBP are increasing, and more and more clinical studies and animal experiments have focused on NBP. In this study, we used male Sprague Dawley rats as an animal model to elucidate the intervention effect of butylphthalide on high altitude cerebral edema (HACE), and also compared the effect of butylphthalide and rhodiola rosea on HACE. Firstly, we measured the changes of body weight and brain water content and observed the pathological changes of brain tissues. In addition, the contents of inflammatory factors, oxidative stress and brain neurotransmitters were assessed by enzyme-linked immunoassay kits, and finally, the expression of apoptotic proteins in brain tissues was determined by western blotting. The results showed that NBP reduced brain water content, attenuated brain tissue damage, altered inflammatory factors, oxidative stress indicators, and brain neurotransmitter levels, and in addition NBP inhibited the expression of Caspase-related apoptotic proteins. Therefore, NBP has the potential to treat and prevent HACE.

11.
Chem Commun (Camb) ; 60(38): 5058-5061, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38634822

RESUMO

Herein, we develop innovative p-block Bi-doped Co3O4 nanoflakes (Bi-Co3O4 NFAs) on nickel foam, which exhibit excellent electrocatalytic activity for both glucose oxidation (GOR) and H2 evolution reactions (HER). The two-electrode GOR-HER electrolyzer using Bi-Co3O4 NFAs as both the cathode and anode shows a remarkable reduced operation voltage of 1.48 V at 10 mA cm-2, superior to the 1.66 V of the OER-HER electrolyzer, demonstrating promising potential for advanced H2 production featuring energy saving and simultaneously produced value-added chemicals.

12.
Nat Commun ; 15(1): 2046, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448407

RESUMO

Continuous industrialization and other human activities have led to severe water quality deterioration by harmful pollutants. Achieving robust and high-throughput water purification is challenging due to the coupling between mechanical strength, mass transportation and catalytic efficiency. Here, a structure-function integrated system is developed by Douglas fir wood-inspired metamaterial catalysts featuring overlapping microlattices with bimodal pores to decouple the mechanical, transport and catalytic performances. The metamaterial catalyst is prepared by metal 3D printing (316 L stainless steel, mainly Fe) and electrochemically decorated with Co to further boost catalytic functionality. Combining the flexibility of 3D printing and theoretical simulation, the metamaterial catalyst demonstrates a wide range of mechanical-transport-catalysis capabilities while a 70% overlap rate has 3X more strength and surface area per unit volume, and 4X normalized reaction kinetics than those of traditional microlattices. This work demonstrates the rational and harmonious integration of structural and functional design in robust and high throughput water purification, and can inspire the development of various flow catalysts, flow batteries, and functional 3D-printed materials.

13.
Bioconjug Chem ; 35(4): 528-539, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38514970

RESUMO

Cancer which causes high mortality globally threatens public health seriously. There is an urgent need to develop tumor-specific near-infrared (NIR) imaging agents to achieve precise diagnosis and guide effective treatment. In recent years, imaging probes that respond to acidic environments such as endosomes, lysosomes, or acidic tumor microenvironments (TMEs) are being developed. However, because of their nonspecific internalization by both normal and tumor cells, resulting in a poor signal-to-noise ratio in diagnosis, these pH-sensitive probes fail to be applied to in vivo tumor imaging. To address this issue, a cholecystokinin-2 receptor (CCK2R)-targeted TME-sensitive NIR fluorescent probe R2SM was synthesized by coupling pH-sensitive heptamethine cyanine with a CCK2R ligand, minigastrin analogue 11 (MG11) for in vivo imaging, in which MG11 would target overexpressed CCK2Rs in gastrointestinal stromal tumors (GISTs). Cell uptake assay demonstrated that R2SM exhibited a high affinity for CCK2R, leading to receptor-mediated internalization and making probes finally accumulated in the lysosomes of tumor cells, which suggested in the tumor tissues, the probes were distributed in the extracellular acidic TME and intracellular lysosomes. With a pKa of 6.83, R2SM can be activated at the acidic TME (pH = 6.5-6.8) and lysosomes (pH = 4.5-5.0), exhibiting an apparent pH-dependent behavior and generating more intense fluorescence in these acidic environments. In vivo imaging showed that coupling of MG11 with a pH-sensitive NIR probe facilitated the accumulation of probe and enhanced the fluorescence in CCK2R-overexpressed HT-29 tumor cells. A high signal was observed in the tumor region within 0.5 h postinjection, indicating its potential application in intraoperative imaging. Fluorescence imaging of R2SM exhibited higher tumor-to-liver and tumor-to-kidney ratios (2.1:1 and 2.3:1, respectively), compared separately with the probes that are lipophilic, pH-insensitive, or MG11-free. In vitro and in vivo studies demonstrated that the synergistic effect of tumor targeting with pH sensitivity plays a vital role in the high signal-to-noise ratio of the NIR imaging probe. Moreover, different kinds of tumor-targeting vectors could be conjugated simultaneously with the NIR dye, which would further improve the receptor affinity and targeting efficiency.


Assuntos
Corantes Fluorescentes , Receptor de Colecistocinina B , Linhagem Celular Tumoral , Imagem Óptica
14.
Biochem Biophys Res Commun ; 705: 149738, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38447391

RESUMO

The proliferation and apoptosis of ovarian granulosa cells are important for folliculogenesis. As a transcription factor, SRY-box transcription factor 4 (SOX4) has important roles in regulating cellular proliferation and apoptosis. Nonetheless, the regulatory mechanisms of SOX4 on proliferation and apoptosis of granulosa cells remain elusive. Therefore, a stably overexpressed SOX4 ovarian granulosa cell line KGN was generated by lentivirus encapsulation. We observed that overexpression of SOX4 inhibits apoptosis, promotes proliferation and migration of KGN cells. Comparative analysis of the transcriptome revealed 868 upregulated and 696 downregulated DEGs in LV-SOX4 in comparison with LV-CON KGN cell lines. Afterward, further assessments were performed to explore the possible functions about these DEGs. The data showed their involvement in many biological processes, particularly the Hippo signaling pathway. Moreover, the expression levels of YAP1, WWTR1, WTIP, DLG3, CCN2, and AMOT, which were associated with the Hippo signaling pathway, were further validated by qRT-PCR. In addition, the protein expression levels of YAP1 were markedly elevated, while p-YAP1 were notably reduced after overexpression of SOX4 in KGN cells. Thus, these results suggested that SOX4 regulates apoptosis, proliferation and migration of KGN cells, at least partly, through activation of the Hippo signaling pathway, which might be implicated in mammalian follicle development.


Assuntos
Células da Granulosa , Via de Sinalização Hippo , Feminino , Animais , Humanos , Linhagem Celular Tumoral , Células da Granulosa/metabolismo , Proliferação de Células , Apoptose , Mamíferos/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Correpressoras/metabolismo
15.
Genes (Basel) ; 15(3)2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540326

RESUMO

Torreya grandis, an economically significant evergreen tree species exclusive to subtropical China, is highly valued for its seeds. However, the seed development process of T. grandis remains relatively unexplored. Given the pivotal role WRKY transcription factors (TFs) play in coordinating diverse cellular and biological activities, as well as crucial signaling pathways essential for plant growth and development, and the lack of comprehensive investigation into their specific functions in T. grandis, our study investigated its genome and successfully isolated 78 WRKY genes and categorized them into three distinct clades. A conserved motif analysis unveiled the presence of the characteristic WRKY domain in each identified TgWRKY protein. The examination of gene structures revealed variable numbers of introns (ranging from zero to eight) and exons (ranging from one to nine) among TgWRKY genes. A chromosomal distribution analysis demonstrated the presence of TgWRKY across eight chromosomes in T. grandis. Tissue-specific expression profiling unveiled distinctive patterns of these 78 TgWRKY genes across various tissues. Remarkably, a co-expression analysis integrating RNA-seq data and morphological assessments pinpointed the pronounced expression of TgWRKY25 during the developmental stages of T. grandis seeds. Moreover, a KEGG enrichment analysis, focusing on genes correlated with TgWRKY25 expression, suggested its potential involvement in processes such as protein processing in the endoplasmic reticulum, starch, and sucrose metabolism, thereby modulating seed development in T. grandis. These findings not only underscore the pivotal role of WRKY genes in T. grandis seed development but also pave the way for innovative breeding strategies.


Assuntos
Melhoramento Vegetal , Taxaceae , Perfilação da Expressão Gênica , Genes de Plantas , Sementes/genética , Sementes/química , Taxaceae/química , Taxaceae/genética
16.
Gene ; 901: 148176, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38242380

RESUMO

Zebrafish (Danio rerio) is a widely recognized and extensively studied model organism in scientific research. The regulatory mechanism of gonadal development and differentiation of this species has aroused considerable attention. Nonetheless, the major sex-biased genes and pathways associated with gonadal development remain elusive. Therefore, to comprehend this intricate process, gonadal transcriptome sequencing was carried out to identify differentially expressed genes (DEGs) between the testes and ovaries of adult zebrafish. The preliminary assessment yielded a total of 23,529,272 and 23,521,368 clean reads from the cDNA libraries of ovaries and testes. Afterward, a comparative analysis of the transcriptome revealed 3,604 upregulated and 11,371 downregulated DEGs in the ovaries compared to the testes. Of these genes, 428 were exclusively expressed in females, while 3,516 were exclusively expressed in males. Additionally, further assessments were conducted to explore the functions associated with these DEGs in various biological processes. The data revealed their involvement in sex-biased pathways, such as progesterone-mediated oocyte maturation, oocyte meiosis, cytokine-cytokine receptor interaction, and cardiac muscle contraction. Finally, the expression levels of 14 sex-biased DEGs (cdc20, ccnb1, ypel3, chn1, bmp15, rspo1, tnfsf10, egfra, acta2, cox8a, gsdf, dmrt1, star, and cyp17a1) associated with the enriched pathways were subjected to further validation through qRT-PCR. The data acquired from these investigations offer valuable resources to support further exploration of the mechanisms governing sexual dimorphism and gonadal development in zebrafish.


Assuntos
Ovário , Perciformes , Animais , Feminino , Masculino , Ovário/metabolismo , Testículo/metabolismo , Peixe-Zebra/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Perciformes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA