Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(15): 4602-4609, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38567988

RESUMO

Oxygen vacancy (OV) engineering has been widely applied in different types of metal oxide-based photocatalytic reactions. Our study has shown that the redistributed OVs resulting from voids in CeO2 rods lead to significant differences in the band structure in space. The flat energy band within the highly crystallized bulk region hinders the recombination of photogenerated carrier pairs during the transfer process. The downward curved energy band in the surface region enhances the activation of the absorbents. Therefore, the localization of the band structure through crystal structure regionalization renders V-CeO2 capable of achieving efficient utilization of photogenerated carriers. Practically, the V-CeO2 rod shows a remarkable turnover number of 190.58 µmol g-1 h-1 in CO2 photoreduction, which is ∼9.4 times higher than that of D-CeO2 (20.46 µmol g-1 h-1). The designed modularization structure in our work is expected to provide important inspiration and guidance in coordinating the kinetic behavior of carriers in OV defect-rich photocatalysts.

2.
Natl Sci Rev ; 11(2): nwad275, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38226176

RESUMO

Solar-driven CO2 conversion into hydrocarbon fuels is a sustainable approach to synchronously alleviating the energy crisis and achieving net CO2 emissions. However, the dependence of the conversion process on solar illumination hinders its practical application due to the intermittent availability of sunlight at night and on cloudy or rainy days. Here, we report a model material of Pt-loaded hexagonal tungsten trioxide (Pt/h-WO3) for decoupling light and dark reaction processes, demonstrating the sustainable CO2 conversion under dark conditions for the first time. In such a material system, hydrogen atoms can be produced by photocatalytic water splitting under solar illumination, stored together with electrons in the h-WO3 through the transition of W6+ to W5+ and spontaneously released to trigger catalytic CO2 reduction under dark conditions. Furthermore, we demonstrate using natural light that CH4 production can persist at night and on rainy days, proving the accomplishment of all-weather CO2 conversion via a sustainable way.

3.
ACS Sens ; 9(1): 139-148, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38096168

RESUMO

The high density of surface active sites, high efficiency of interfacial carrier transport, and molecular diffusion path determine the efficiency of the electrochemical sensors. The ultrathin structures have atomic-level thickness, carrier migration and heat diffusion are limited in the two-dimensional plane, resulting in excellent conductivity and high carrier concentration. A one-step chemical method is applied to synthesize defect-rich Au-SnO2 in an ultrathin nanosheet form (thickness of 2-3 nm). The strong interaction between Au and SnO2 via the Au-O-Sn bonding and the catalytic effect of Au can prolong the service life via decreasing the optimal operating temperature (55 °C) and promote the Au-SnO2 sensor to exclusively detect formaldehyde at the ppb level (300 ppb). The experimental findings along with theoretical study reveal that Au nanoparticles have a different effect on the competitive adsorption and chemical reaction over the surface of the Au-SnO2 with formaldehyde and other interfering VOC gases, such as methanol, ethanol, and acetone. This study provides mechanistic insights into the correlation between operating temperature and the performance of the Au-SnO2 chemiresistive sensor. This work allows the development of highly efficient and stable electrochemical sensors to detect VOC gases at room temperature in the future.


Assuntos
Nanopartículas Metálicas , Compostos Orgânicos Voláteis , Ouro , Formaldeído , Gases
4.
Environ Sci Technol ; 57(35): 13236-13246, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37615390

RESUMO

Development of cost-effective oxide catalysts holds the key to the removal of toluene, one of the most important volatile organic compounds. However, the catalysts follow varied working mechanisms at different reaction temperatures, posing a challenge to achieving efficient toluene removal over a wide temperature range. Here we report an agitation-assisted molten salt method, which achieves the rational doping on a two-dimensional Co3O4 catalyst and forms two different structures of active sites to enhance catalytic oxidation of toluene in specific temperature intervals, enabling a facile tandem design for working in a wide temperature range. Specifically, Co3O4 is doped with Cu at the octahedral site (Cu-Co3O4) and Zn at the tetrahedral site (Zn-Co3O4) to form CuOh-O-CoTe and ZnTe-O-CoOh structures on the surface, respectively. Mechanistic studies reveal the different working mechanisms of these two active sites toward remarkable performance enhancement at specific temperature intervals, and the improved performance derived from accelerated consumption of intermediates adsorbed on the catalyst surface. Taken together, Cu-Co3O4 and Zn-Co3O4 achieve excellent toluene purification performance over a wide temperature range. This work provides insights into the mechanism-oriented design of active sites at the atomic level.


Assuntos
Cobalto , Tolueno , Temperatura , Catálise
5.
Angew Chem Int Ed Engl ; 61(27): e202203063, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35475563

RESUMO

Solar-driven CO2 methanation with water is an important route to simultaneously address carbon neutrality and produce fuels. It is challenging to achieve high selectivity in CO2 methanation due to competing reactions. Nonetheless, aspects of the catalyst design can be controlled with meaningful effects on the catalytic outcomes. We report highly selective CO2 methanation with water vapor using a photocatalyst that integrates polymeric carbon nitride (CN) with single Pt atoms. As revealed by experimental characterization and theoretical simulations, the widely explored Pt-CN catalyst is adapted for selective CO2 methanation with our rationally designed synthetic method. The synthesis creates defects in CN along with formation of hydroxyl groups proximal to the coordinated Pt atoms. The photocatalyst exhibits high activity and carbon selectivity (99 %) for CH4 production in photocatalytic CO2 reduction with pure water. This work provides atomic scale insight into the design of photocatalysts for selective CO2 methanation.

6.
ACS Sens ; 7(4): 1201-1212, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35362946

RESUMO

To avoid carcinogenicity, formaldehyde gas, currently being only detected at higher operating temperatures, should be selectively detected in time with ppb concentration sensitivity in a room-temperature indoor environment. This is achieved in this work through introducing oxygen vacancies and Pt clusters on the surface of In2O3 to reduce the optimal operating temperature from 120 to 40 °C. Previous studies have shown that only water participates in the competitive adsorption on the sensor surface. Here, we experimentally confirm that the adsorbed water on the fabricated sensor surface is consumed via a chemical reaction due to the strong interaction between the oxygen vacancies and Pt clusters. Therefore, the long-term stability of formaldehyde gas detection is improved. The results of theoretical calculations in this work reveal that the excellent formaldehyde gas detection of Pt/In2O3-x originates from the electron enrichment due to the surface oxygen vacancies and the molecular adsorption and activation ability of Pt clusters on the surface. The developed Pt/In2O3-x sensor has potential use in the ultraefficient, low-temperature, highly sensitive, and stable detection of indoor formaldehyde at an operating temperature as low as room temperature.


Assuntos
Oxigênio , Platina , Formaldeído , Platina/química , Temperatura , Água
7.
ACS Appl Mater Interfaces ; 11(11): 10651-10662, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30807084

RESUMO

The development of catalysts that effectively activate target pollutants and promote their complete conversion is an admirable objective in the environmental photocatalysis field. In this work, graphitic carbon nitride (g-C3N4) microtubes with tunable N-vacancy concentrations were controllably fabricated using an in situ soft-chemical method. The morphological evolution of g-C3N4, from the bulk to the porous tubular architecture, is discussed in detail with the aid of time-resolved hydrothermal experiments. We found that the NO removal ratio and apparent reaction rate constant of the g-C3N4 microtubes were 1.8 and 2.6 times higher than those of pristine g-C3N4, respectively. By combining detailed experimental characterization and density functional theory calculations, the effects of N-vacancies in the g-C3N4 microtubes on O2 and NO adsorption activation, electron capture, and electronic structure were systematically investigated. These results demonstrate that surface N-vacancies act as specific sites for the adsorption activation of reactants and photoinduced electron capture, while enhancing the light-absorbing capability of g-C3N4. Moreover, the porous wall structures of the as-prepared g-C3N4 microtubes facilitate the diffusion of reactants, and their tubular architectures favor the oriented transfer of charge carriers. The intermediates formed during photocatalytic NO removal processes were identified by in situ diffuse reflectance infrared Fourier transform spectroscopy, and different reaction pathways over pristine and N-deficient g-C3N4 are proposed. This study provides a feasible strategy for air pollution control over g-C3N4 by introducing N-vacancy and porous tubular architecture simultaneously.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA