Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Antioxidants (Basel) ; 13(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38790621

RESUMO

Magnesium (Mg) deficiency is a major factor limiting the growth and development of plants. Mulberry (Morus alba L.) is an important fruit tree crop that requires Mg for optimal growth and yield, especially in acid soils. However, the molecular mechanism of Mg stress tolerance in mulberry plants remains unknown. In this study, we used next-generation sequencing technology and biochemical analysis to profile the transcriptome and physiological changes of mulberry leaves under different Mg treatments (deficiency: 0 mM, low: 1 mM, moderate low: 2 mM, sufficiency: 3 mM, toxicity: 6 mM, higher toxicity: 9 mM) as T1, T2, T3, CK, T4, T5 treatments, respectively, for 20 days. The results showed that Mg imbalance altered the antioxidant enzymatic activities, such as catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), and non-enzymatic, including soluble protein, soluble sugar, malondialdehyde (MDA), and proline (PRO), contents of the plant. The Mg imbalances disrupted the ultrastructures of the vital components of chloroplast and mitochondria relative to the control. The transcriptome data reveal that 11,030 genes were differentially expressed (DEGs). Genes related to the photosynthetic processes (CAB40, CAB7, CAB6A, CAB-151, CAP10A) and chlorophyll degradation (PAO, CHLASE1, SGR) were altered. Antioxidant genes such as PER42, PER21, and PER47 were downregulated, but DFR was upregulated. The carbohydrate metabolism pathway was significantly altered, while those involved in energy metabolism processes were perturbed under high Mg treatment compared with control. We also identified several candidate genes associated with magnesium homeostasis via RT-qPCR validation analysis, which provided valuable information for further functional characterization studies such as promoter activity assay or gene overexpression experiments using transient expression systems.

2.
Plant Physiol Biochem ; 207: 108316, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176189

RESUMO

Mulberry (Morus alba) is an essential plant with countless economic benefits; however, its growth and metabolic processes are hampered by boron (B) stresses. Very little research has been performed to elucidate boron tolerance and detoxification mechanisms in this species. The M. alba cultivar, Yu-711, was exposed to five different concentrations of boric acid (H3BO3), including deficient (T1; 0 mM) moderate B deficiency (T2; 0.02 mM), sufficient (CK; 0.1 mM) and toxic (T3 and T4; 0.5 and 1 mM) levels for 18 days of growth in pots experiment. Transcriptome analysis of B deficiency and toxicity treatments was performed on mulberry leaves. The transcriptome data reveal that a total of 6114 genes were differentially expressed (DEGs), of which 3830 were up-regulated and 2284 were down-regulated. A comparative analysis between treatment groups CK-vs-T1 (deficiency) and CK-vs-T4 (toxicity) indicates that 590 and 1383 genes were down-regulated in both deficiency and B toxicity, respectively. The results show that 206 genes were differentially expressed in all treatments. B deficiency and toxicity significantly altered the expression of the key aquaporins (PIP2-1, PIP2-7, PIP2-4 and NIP3-1) and high-affinity boron transporter genes (BOR1 and BOR7). In addition, boron stress also altered the expression of antioxidants and photosynthesis-related genes. B stresses were found to alter several transcription factors including ERF1B, which is associated with the regulation of boron uptake and the synthesis and signaling of phytohormones. Unravelling the mechanisms of B tolerance and detoxification is important and would give us further insight into how B stresses affect mulberry plants.


Assuntos
Morus , Morus/genética , Boro/toxicidade , Boro/metabolismo , Perfilação da Expressão Gênica/métodos , Transcriptoma/genética , Folhas de Planta/metabolismo
3.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069181

RESUMO

Mulberry plants (Morus alba) have leaf shapes, ranging from unlobed to lobed, which are crucial for yield, growth, and adaptability, indicating their ability to adapt to their environment. Competing endogenous RNAs (ceRNAs) constitute a web of RNAs within the organism's transcriptional regulatory system, including protein-coding genes (mRNAs), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and others. In this study, samples for ceRNA sequencing were categorized into two groups: whole leaves and lobed leaves, each group with three replicates. In addition, we isolated, cloned, and characterized the precursor miRNA (miR156x) from the leaves of M. alba. miR156x precursor had a length of 107 base pairs and a minimum folding free energy of 50.27 kcal/mol. We constructed a pCAMBIA-35S-GUS-miR156x dual overexpression vector and established a transient transformation system for mulberry. At an optimal transformation solution (OD600 = 0.7), the GUS gene showed a higher expression in the leaves of transiently transformed mulberry with miR156x overexpression, four days after transformation, while the target genes of miR156x had decreased expression in the same leaves. Investigations into the transgenic mulberry plants uncovered various modifications to physio-chemical parameters including POD, SOD, PRO, MDA, soluble proteins and sugars, and chlorophyl content. miRNAs in the plants were found to act as negative regulators of gene expression in response to changes in leaf shape regulation, which was confirmed in vitro using dual-luciferase reporter assays. Subsequently, we cloned Maspl3 in vitro and conducted GST-Pull down assays, obtaining multiple proteins that interacted with the Maspl3 gene. This indicates that the miR156x/Maspl3/MSTRG.25812.1 regulatory module contributes to the differences in mulberry leaf shape.


Assuntos
MicroRNAs , Morus , Morus/química , RNA Endógeno Competitivo , Folhas de Planta/metabolismo , MicroRNAs/metabolismo , Plantas Geneticamente Modificadas/genética , Genes Reguladores
4.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37298601

RESUMO

Mulberry (Morus alba) is a significant plant with numerous economic benefits; however, its growth and development are affected by nutrient levels. A high level of magnesium (Mg) or magnesium nutrient starvation are two of the significant Mg factors affecting plant growth and development. Nevertheless, M. alba's metabolic response to different Mg concentrations is unclear. In this study, different Mg concentrations, optimal (3 mmol/L), high (6 mmol/L and 9 mmol/L), or low (1 and 2 mmol/L) and deficient (0 mmol/L), were applied to M. alba for three weeks to evaluate their effects via physiological and metabolomics (untargeted; liquid chromatography-mass spectrometry (LC-MS)) studies. Several measured physiological traits revealed that Mg deficiency and excess Mg altered net photosynthesis, chlorophyll content, leaf Mg content and fresh weight, leading to remarkable reductions in the photosynthetic efficiency and biomass of mulberry plants. Our study reveals that an adequate supply of the nutrient Mg promoted the mulberry's physiological response parameters (net photosynthesis, chlorophyll content, leaf and root Mg content and biomass). The metabolomics data show that different Mg concentrations affect several differential metabolite expressions (DEMs), particularly fatty acyls, flavonoids, amino acids, organic acid, organooxygen compounds, prenol lipids, coumarins, steroids and steroid derivatives, cinnamic acids and derivatives. An excessive supply of Mg produced more DEMs, but negatively affected biomass production compared to low and optimum supplies of Mg. The significant DEMs correlated positively with mulberry's net photosynthesis, chlorophyll content, leaf Mg content and fresh weight. The mulberry plant's response to the application of Mg used metabolites, mainly amino acids, organic acids, fatty acyls, flavonoids and prenol lipids, in the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. These classes of compounds were mainly involved in lipid metabolism, amino acid metabolism, energy metabolism, the biosynthesis of other secondary metabolites, the biosynthesis of other amino acids, the metabolism of cofactors and vitamin pathways, indicating that mulberry plants respond to Mg concentrations by producing a divergent metabolism. The supply of Mg nutrition was an important factor influencing the induction of DEMs, and these metabolites were critical in several metabolic pathways related to magnesium nutrition. This study provides a fundamental understanding of DEMs in M. alba's response to Mg nutrition and the metabolic mechanisms involved, which may be critical to the mulberry genetic breeding program.


Assuntos
Magnésio , Morus , Magnésio/metabolismo , Morus/química , Melhoramento Vegetal , Clorofila/metabolismo , Flavonoides/metabolismo , Metabolômica , Lipídeos/análise , Aminoácidos/metabolismo , Nutrientes , Folhas de Planta/metabolismo
5.
Plant Physiol Biochem ; 200: 107649, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37267755

RESUMO

Boron (B) is essential for normal and healthy plant growth. Therefore, Boron stress is a common abiotic stress that limits plant growth and productivity. However, how mulberry copes with boron stress remains unclear. In this study, seedlings of the Morus alba cultivar, Yu-711, were treated with five different concentrations of boric acid (H3BO3), including deficient (0 and 0.02 mM), sufficient (0.1 mM) and toxic (0.5 and 1 mM) levels. Physiological parameters, enzymatic activities and non-targeted liquid chromatography-mass spectrometry (LC-MS) technique were employed to evaluate the effects of boron stress on the net photosynthetic rate (Pn), chlorophyll content, stomatal conductance (Gs), transpiration rate (Tr), intercellular CO2 concentration (Ci) and metabolome signatures. Physiological analysis revealed that Boron deficiency and toxicity induced a decline in Pn, Ci, Gs, Tr, and chlorophyll content. Also, enzymatic activities, including catalase (CAT) and superoxide dismutase (SOD), decreased, while POD activity increased in response to Boron stress. Osmotic substances such as soluble sugars, soluble proteins, and proline (PRO) presented elevated levels under all Boron concentrations. Metabolome analysis indicated that differential metabolites, including amino acids, secondary metabolites, carbohydrates, and lipids, played a key role in Yu-711's response to Boron stress. These metabolites were mainly involved in amino acid metabolism, biosynthesis of other secondary metabolites, lipid metabolism, metabolism of cofactors and vitamins, and metabolism of other amino acids pathways. Our findings reveal the various metabolites pathways in mulberry response to boron nutrient supply and may serve as fundamental knowledge in breeding resistance mulberry plants, so that it can cope with climate changes.


Assuntos
Morus , Morus/fisiologia , Boro/metabolismo , Melhoramento Vegetal , Fotossíntese , Clorofila/metabolismo , Metabolômica , Nutrientes
6.
Life (Basel) ; 12(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36143348

RESUMO

ZIP4 (zinc transporter 4) plays important roles in transporting Cu2+ ions in plants, which may contribute to the maintenance of plant metal homeostasis in growth, plant development and normal physiological metabolism. However, ZIP4 transporters have not been described in mulberry and the exact function of ZIP4 transporters in regulating the homeostasis of Cu in mulberry remains unclear. In this study, a new ZIP4 gene (MaZIP4) was isolated and cloned from Morus atropurpurea R. Phylogenetic analysis of amino sequences suggested that the amino-acid sequence of the MaZIP4 protein shows high homology with other ZIP4 proteins of Morus notabilis, Trema orientale, Ziziphus jujube and Cannabis sativa. In addition, a MaZIP4 silenced line was successfully constructed using virus-induced gene silencing (VIGS). The analysis of MaZIP4 expression by quantitative real-time PCR in mulberry showed that the level of MaZIP4 expression increased with increasing Cu concentration until the Cu concentration reached 800 ppm. Relative to the blank (WT) and the negative controls, malondialdehyde (MDA) levels increased significantly and rose with increasing Cu concentration in the MaZIP4 silenced line, whereas the soluble protein and proline content, superoxide dismutase (SOD) and peroxidase (POD) activities of these transgenic plants were lower. These results indicated that MaZIP4 may play an important role in the resistance of mulberry to Cu stress.

7.
Plants (Basel) ; 10(8)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34451681

RESUMO

Mulberry is an economically significant crop for the sericulture industry worldwide. Stresses such as drought exposure have a significant influence on plant survival. Because metabolome directly reflects plant physiological condition, performing a global metabolomic analysis is one technique to examine this influence. Using a liquid chromatography-mass spectrometry (LC-MS) technique based on an untargeted metabolomic approach, the effect of drought stress on mulberry Yu-711 metabolic balance was examined. For this objective, Yu-711 leaves were subjected to two weeks of drought stress treatment and control without drought stress. Numerous differentially accumulated metabolic components in response to drought stress treatment were revealed by multivariate and univariate statistical analysis. Drought stress treatment (EG) revealed a more differentiated metabolite response than the control (CK). We found that the levels of total lipids, galactolipids, and phospholipids (PC, PA, PE) were significantly altered, producing 48% of the total differentially expressed metabolites. Fatty acyls components were the most abundant lipids expressed and decreased considerably by 73.6%. On the other hand, the prenol lipids class of lipids increased in drought leaves. Other classes of metabolites, including polyphenols (flavonoids and cinnamic acid), organic acid (amino acids), carbohydrates, benzenoids, and organoheterocyclic, had a dynamic trend in response to the drought stress. However, their levels under drought stress decreased significantly compared to the control. These findings give an overview for the understanding of global plant metabolic changes in defense mechanisms by revealing the mulberry plant metabolic profile through differentially accumulated compounds.

8.
Biochem Genet ; 59(2): 589-603, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33389282

RESUMO

Copper (Cu) is an essential trace element for plant growth and development. It is widely involved in respiration, photosynthesis, pollen formation, and other biological processes. Therefore, low or excessive copper causes damage to plants. Mulberry is an essential perennial economic tree. At present, research on the abiotic stress responses in mulberry is mainly focused on the identification of resistant germplasm resources and cloning of resistant genes. In contrast, studies on the resistance function of microRNAs and the regulatory gene responses to stress are rare. In this study, small RNA libraries (control and copper stressed) were constructed from mulberry leaf RNA. High-throughput sequencing and screening were employed, a total of 65 known miRNAs and 78 predicted novel mature miRNAs were identified, among which 40 miRNAs were differentially expressed under copper stress. Subsequently, expression patterns were verified for 14 miRNAs by real-time fluorescence quantitative PCR (qPCR). The target genes of miRNAs were validated by 5' RLM-RACE. Our results provide the bases for further study on the molecular mechanism of copper stress regulation in mulberry.


Assuntos
Cobre/metabolismo , MicroRNAs , Morus , Folhas de Planta , Estresse Fisiológico , Estudo de Associação Genômica Ampla , MicroRNAs/biossíntese , MicroRNAs/genética , Morus/genética , Morus/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , RNA de Plantas/biossíntese , RNA de Plantas/genética
9.
Ecology ; 101(8): e03062, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32239497

RESUMO

Top-down and bottom-up controls regulate the structure and stability of ecosystems, but their relative roles in terrestrial systems have been debated. Here we studied a hydro-inundated land-bridge system in subtropical China and tested the relative importance of these two controls in determining the rodent-mediated regeneration of a locally dominant tree species. Our results showed that both controls operated in terrestrial habitats and that their relative importance switched as habitat size changed. Habitat loss initially removed predators of rodents that released rodent populations and triggered massive seed predation (top-down control), leading to reduced seedling establishment. A further reduction in habitat size led to decrease in rodent population that was supposed to increase seedling survival of the tree species, but the decline in habitat size deteriorated the abiotic environments (bottom-up control) that severely prevented seedling recruitment. As the ongoing global land use change is creating increasing number of small-sized forest fragments, our findings provide novel insights into the restoration of seriously fragmented forests.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , China , Florestas , Comportamento Predatório , Árvores
10.
Commun Biol ; 2: 277, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31372516

RESUMO

Negative distance-dependence of conspecific seedling mortality (NDisDM) is a crucial stabilizing force that regulates plant diversity, but it remains unclear whether and how fragment size shifts the strength of NDisDM. Here, we surveyed the seed‒seedling transition process for a total of 25,500 seeds of a local dominant tree species on islands of various sizes in a reservoir and on the nearby mainland. We found significant NDisDM on the mainland and large and medium islands, with significantly stronger NDisDM on medium islands. However, positive distance-dependent mortality was detected on small islands. Changes in distance-dependence were critically driven by both rodent attack and pathogen infestation, which were significantly affected by fragment size. Our results emphasize the necessity of incorporating the effects of fragment size on distance-dependent regeneration of dominant plant species into the existing frameworks for better predicting the consequences of habitat fragmentation.


Assuntos
Fagaceae/embriologia , Fagaceae/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Árvores , Animais , Biodiversidade , Roedores/fisiologia
11.
Ecol Evol ; 2(9): 2250-61, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23139883

RESUMO

Gene flow strongly influences the regional genetic structuring of plant populations. Seed and pollen dispersal patterns can respond differently to the increased isolation resulting from habitat fragmentation, with unpredictable consequences for gene flow and population structuring. In a recently fragmented landscape we compared the pre- and post-fragmentation genetic structure of populations of a tree species where pollen and seed dispersal respond differentially to forest fragmentation generated by flooding. Castanopsis sclerophylla is wind-pollinated, with seeds that are dispersed by gravity and rodents. Using microsatellites, we found no significant difference in genetic diversity between pre- and post-fragmentation cohorts. Significant genetic structure was observed in pre-fragmentation cohorts, due to an unknown genetic barrier that had isolated one small population. Among post-fragmentation cohorts this genetic barrier had disappeared and genetic structure was significantly weakened. The strengths of genetic structuring were at a similar level in both cohorts, suggesting that overall gene flow of C. sclerophylla has been unchanged by fragmentation at the regional scale. Fragmentation has blocked seed dispersal among habitats, but this appears to have been compensated for by enhanced pollen dispersal, as indicated by the disappearance of a genetic barrier, probably as a result of increased wind speeds and easier pollen movement over water. Extensive pollen flow can counteract some negative effects of fragmentation and assist the long-term persistence of small remnant populations.

12.
Am J Bot ; 98(7): e170-2, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21700806

RESUMO

PREMISE OF THE STUDY: Microsatellite primers were developed in the functionally dioecious Ficus pumila L. to provide polymorphic markers for further population genetic studies and parentage analysis. METHODS AND RESULTS: Eleven polymorphic microsatellite loci were developed in F. pumila. These loci were successfully amplified in four F. pumila populations from eastern China (Fodu, Xiangshan, Xianju, and Hexi). These loci had 3-11 alleles across all 80 F. pumila individuals. At the population level, the number of alleles per locus varied from 1 to 8, and the observed (H(O)) and expected (H(E)) heterozygosities ranged from 0.000 to 0.900 and from 0.000 to 0.830, respectively. Linkage disequilibrium between loci FP213 and FP435 was found in three of the four tested populations. CONCLUSIONS: These loci showed high levels of polymorphism, indicating the utility of these primers in population genetic studies as well as parentage analysis of F. pumila.


Assuntos
Primers do DNA/genética , Ficus/genética , Técnicas Genéticas , Repetições de Microssatélites/genética , Polimorfismo Genético , Loci Gênicos/genética , Dados de Sequência Molecular
13.
Am J Bot ; 98(6): e155-7, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21613064

RESUMO

PREMISE OF THE STUDY: Polymorphic microsatellite primers were developed in the vulnerable seagrass Halophila beccarii to investigate genetic variation and provide necessary markers for studying its population genetic structure. METHODS AND RESULTS: Six polymorphic and six monomorphic microsatellite loci were developed in H. beccarii. Most loci were successfully amplified across 40 H. beccarii individuals collected from three populations from coastal regions of southern China. Two to four alleles per locus were observed at the six polymorphic loci. The highest expected heterozygosity was 0.5737. CONCLUSIONS: The results demonstrate low levels of polymorphism in H. beccarii from coastal regions of southern China. They also illustrate that these primers may be useful for studying the mating system and population genetics of H. beccarii on a global scale.


Assuntos
Primers do DNA/genética , Espécies em Perigo de Extinção , Hydrocharitaceae/genética , Repetições de Microssatélites/genética , Alelos , Loci Gênicos/genética , Genética Populacional , Heterozigoto , Dados de Sequência Molecular
14.
Am J Bot ; 98(2): e19-21, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21613097

RESUMO

PREMISE OF THE STUDY: We developed polymorphic microsatellite primers in Castanopsis sclerophylla (Lindley & Paxton) Schottky (Fagaceae), a dominant canopy tree, to provide markers for further studies on the genetic structure and mating system of this species. METHODS AND RESULTS: Ten polymorphic microsatellite loci were isolated and successfully amplified in three C. sclerophylla populations (Huangshanjian, Shilin, and Guanmiao) from Chun'an, Zhejiang Province, China. The number of alleles per locus in these populations ranged from 3 to 17. The observed and expected heterozygosities were 0.100-0.977 and 0.294-0.916, respectively. CONCLUSIONS: These microsatellite loci displayed moderate or high levels of polymorphism within the examined populations, showing the utility of primers in studying the genetic variation, parentage, and mating system of C. sclerophylla.


Assuntos
Alelos , Primers do DNA , DNA de Plantas , Fagaceae/genética , Loci Gênicos , Repetições de Microssatélites , Polimorfismo Genético , Genoma de Planta , Heterozigoto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA