RESUMO
The effects of exercise on fibro-adipogenic progenitors (FAPs) are unclear, and the direct molecular link is still unknown. In this study, we reveal that exercise reduces the frequency of FAPs and attenuates collagen deposition and adipose formation in injured or disused muscles through Musclin. Mechanistically, Musclin inhibits FAP proliferation and promotes apoptosis in FAPs by upregulating FILIP1L. Chromatin immunoprecipitation (ChIP)-qPCR confirms that FoxO3a is the transcription factor of FILIP1L. In addition, the Musclin/FILIP1L pathway facilitates the phagocytosis of apoptotic FAPs by macrophages through downregulating the expression of CD47. Genetic ablation of FILIP1L in FAPs abolishes the effects of exercise or Musclin on FAPs and the benefits on the reduction of fibrosis and fatty infiltration. Overall, exercise forms a microenvironment of myokines in muscle and prevents the abnormal accumulation of FAPs in a Musclin/FILIP1L-dependent manner. The administration of exogenous Musclin exerts a therapeutic effect, demonstrating a potential therapeutic approach for muscle atrophy or acute muscle injury.
Assuntos
Regulação da Expressão Gênica , Proteínas Musculares , Músculos , Fatores de Transcrição , Humanos , Adipogenia , Diferenciação Celular , Fibrose , Homeostase , Músculo Esquelético/metabolismo , Músculos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Camundongos , Proteínas Musculares/metabolismoRESUMO
BACKGROUND: Fascial autografts, which are easily available grafts, have provided a promising option in patients with massive rotator cuff tears. However, no fascial autografts other than the fascia lata have been reported, and the exact healing process of the fascia-to-bone interface is not well understood. The objective of this study is to histologically and biomechanically evaluate the effect of the thoracolumbar fascia (TLF) on fascia-to-bone healing. METHODS: A total of 88 rats were used in this study. Eight rats were killed at the beginning to form an intact control group, and the other rats were divided randomly into 2 groups (40 rats per group): the TLF augmentation group (TLF group) and the repair group (R group). The right supraspinatus was detached, and a 3 × 5 mm defect of the supraspinatus was created. The TLF was used to augment the torn supraspinatus in the TLF group, whereas in the R group, the torn supraspinatus was repaired in only a transosseous manner. Histology and biomechanics were assessed at 1, 2, 4, 8, and 16 weeks postoperatively. RESULTS: The modified tendon maturation score of the TLF group was higher than that of the R group at 8 weeks (23.00 ± 0.71 vs. 24.40 ± 0.89, P = .025) and 16 weeks (24.60 ± 0.55 vs. 26.40 ± 0.55, P ≤ .001). The TLF group showed a rapid vascular reaction, and the peak value appeared at 1 week. Later, the capillary density decreased, and almost no angiogenesis was observed at 8 weeks postoperatively. Immunohistochemistry results demonstrated a significantly higher percentage of collagen I in the TLF group at 4, 8, and 16 weeks (24.78% ± 2.76% vs. 20.67% ± 2.11% at 4 weeks, P = .046; 25.46% ± 1.77% vs. 21.49% ± 2.33% at 8 weeks, P = .026; 34.77% ± 2.25% vs. 30.01% ± 3.17% at 16 weeks, P = .040) postoperatively. Biomechanical tests revealed that the ultimate failure force in the TLF group was significantly higher than that in the R group at the final evaluation (29.13 ± 2.49 N vs. 23.10 ± 3.47 N, P = .022). CONCLUSIONS: The TLF autograft can promote a faster biological healing process and a better fixation strength. It could be used as an alternative reinforcement or bridging patch when the fascia lata is not appropriate or available for superior capsule reconstruction (SCR).
Assuntos
Lesões do Manguito Rotador , Animais , Autoenxertos/patologia , Fenômenos Biomecânicos , Fascia Lata/transplante , Humanos , Ratos , Manguito Rotador/patologia , Manguito Rotador/cirurgia , Lesões do Manguito Rotador/patologia , Lesões do Manguito Rotador/cirurgia , Transplante AutólogoRESUMO
BACKGROUND: Arthroscopic ankle arthrodesis (AAA) is recognized as the standard treatment for the end-stage ankle arthritis. Two-screw configuration fixation is a typical technique for AAA; however, no consensus has been reached on how to select most suitable inserted position and direction. For better joint reduction, we developed a new configuration (2 home run-screw configuration: 2 screws are inserted from the lateral-posterior and medial-posterior malleolus into the talar neck) and investigated whether it turned out to be better than the other commonly used 2-screw configurations. METHODS: In this study, we investigated three kinds of 2-screw configurations: 2 "home run"-screw configuration (group A), crossed transverse configuration (the screw is inserted from the medial malleolus into the anterior talus and the other from the lateral tibia maintains posterior talus, group B), and 2 parallel screw configuration (2 parallel screws are inserted from the posteromedial side of the tibia into talus, group C). The effects of the above three insertions on the loading stress of the tibio-talar joint were comparatively analyzed with a three-dimensional finite element model. RESULTS: Group A was better than groups B and C in respect of stress distribution uniformity and superior to both groups B and C in anti-flexion strength and anti-internal rotation strength. Group A was slightly worse than group C but better than group B in anti-dorsiflexion and anti-valgus and varus strength. CONCLUSIONS: Two "home run"-screw configuration facilitates the reduction of anterior talus dislocation of end-stage ankle arthritis. Our finite element analysis demonstrates the configuration is superior to crossed transverse and parallel configuration for arthroscopic ankle arthrodesis in terms of stress distribution and initial stability.
Assuntos
Articulação do Tornozelo/cirurgia , Artrite/cirurgia , Artrodese/métodos , Parafusos Ósseos , Adulto , Articulação do Tornozelo/diagnóstico por imagem , Articulação do Tornozelo/fisiopatologia , Artrite/diagnóstico por imagem , Artrodese/instrumentação , Análise de Elementos Finitos , Humanos , Imageamento Tridimensional/métodos , Instabilidade Articular/prevenção & controle , Masculino , Estresse Mecânico , Tíbia/cirurgia , Tomografia Computadorizada por Raios X/métodos , Suporte de CargaRESUMO
BACKGROUND: Chronic muscle injury is characteristics of fatty infiltration and fibrosis. Recently, fibro/adipogenic progenitors (FAPs) were found to be indispensable for muscular regeneration while were also responsible for fibrosis and fatty infiltration in muscle injury. Many myokines have been proven to regulate the adipose or cell proliferation. Because the fate of FAPs is largely dependent on microenvironment and the regulation of myokines on FAPs is still unclear. We screened the potential myokines and found Interleukin-15 (IL-15) may regulate the fatty infiltration in muscle injury. In this study, we investigated how IL-15 regulated FAPs in muscle injury and the effect on muscle regeneration. METHODS: Cell proliferation assay, western blots, qRT-PCR, immunohistochemistry, flow cytometric analysis were performed to investigate the effect of IL-15 on proliferation and adipogensis of FAPs. Acute muscle injury was induced by injection of glycerol or cardiotoxin to analyze how IL-15 effected on FAPs in vivo and its function on fatty infiltration or muscle regeneration. RESULTS: We identified that the expression of IL-15 in injured muscle was negatively associated with fatty infiltration. IL-15 can stimulate the proliferation of FAPs and prevent the adipogenesis of FAPs in vitro and in vivo. The growth of FAPs caused by IL-15 was mediated through JAK-STAT pathway. In addition, desert hedgehog pathway may participate in IL-15 inhibiting adipogenesis of FAPs. Our study showed IL-15 can cause the fibrosis after muscle damage and promote the myofiber regeneration. Finally, the expression of IL-15 was positively associated with severity of fibrosis and number of FAPs in patients with chronic rotator cuff tear. CONCLUSIONS: These findings supported the potential role of IL-15 as a modulator on fate of FAPs in injured muscle and as a novel therapy for chronic muscle injury.