Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167053, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38325588

RESUMO

Melatonin is involved in exerting protective effects in aged-related and neurodegenerative diseases through a silent information regulator type 1 (SIRT1)-dependent pathway. However, little was known about the impact of melatonin on retinal ganglion cell (RGC) senescence and apoptosis following optic nerve crush (ONC). Thus, this study aimed to examine the effects of melatonin on RGC senescence and apoptosis after ONC and investigate the involvement of SIRT1 in this process. To study this, an ONC model was established. EX-527, an inhibitor of SIRT1, was injected intraperitoneally into mice. And melatonin was administrated abdominally into mice after ONC every day. Hematoxylin & eosin staining, retina flat-mounts and optical coherence tomography were used to evaluate the loss of retina cells/neurons. Pattern electroretinogram (p-ERG) was performed to evaluate the function of RGCs. Immunofluorescence and western blot were used to evaluate protein expression. SA-ß-gal staining was employed to detect senescent cells. The results demonstrated that melatonin partially rescued the expression of SIRT1 in RGC 3 days after ONC. Additionally, melatonin administration partly rescued the decreased RGC number and ganglion cell complex thickness observed 14 days after ONC. Melatonin also suppressed ONC-induced senescence and apoptosis index. Furthermore, p-ERG showed that melatonin improved the amplitude of P50, N95 and N95/P50 following ONC. Importantly, the protective effects of melatonin were reversed when EX-527 was administered. In summary, this study revealed that melatonin attenuated RGC senescence and apoptosis through a SIRT1-dependent pathway after ONC. These findings provide valuable insights for the treatment of RGC senescence and apoptosis.


Assuntos
Melatonina , Traumatismos do Nervo Óptico , Animais , Camundongos , Apoptose , Melatonina/farmacologia , Melatonina/uso terapêutico , Traumatismos do Nervo Óptico/tratamento farmacológico , Células Ganglionares da Retina/metabolismo , Sirtuína 1/metabolismo
2.
J Pineal Res ; 76(1): e12916, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37786968

RESUMO

Normal tension glaucoma (NTG) is referred to as a progressive degenerative disorder of the retinal ganglion cells (RGCs), resulting in nonreversible visual defects, despite intraocular pressure levels within the statistically normal range. Current therapeutic strategies for NTG yield limited benefits. Excitatory amino acid carrier 1 (EAAC1) knockout (EAAC1-/- ) in mice has been shown to induce RGC degeneration without elevating intraocular pressure, mimicking pathological characteristics of NTG. In this study, we explored whether daily oral administration of melatonin could block RGCs loss and prevent retinal morphology and function defects associated with EAAC1 deletion. We also explored the molecular mechanisms underlying EAAC1 deletion-induced RGC degeneration and the neuroprotective effects of melatonin. Our RNA sequencing and in vivo data indicated EAAC1 deletion caused elevated oxidative stress, activation of apoptosis and cellular senescence pathways, and neuroinflammation in RGCs. However, melatonin administration efficiently prevented these detrimental effects. Furthermore, we investigated the potential role of apoptosis- and senescence-related redox-sensitive factors in EAAC1 deletion-induced RGCs degeneration and the neuroprotective effects of melatonin administration. We observed remarkable upregulation of p53, whereas NRF2 and Sirt1 expression were significantly decreased in EAAC1-/- mice, which were prevented by melatonin treatment, suggesting that melatonin exerted its neuroprotective effects possibly through modulating NRF2/p53/Sirt1 redox-sensitive signaling pathways. Overall, our study provided a solid foundation for the application of melatonin in the management of NTG.


Assuntos
Melatonina , Fármacos Neuroprotetores , Animais , Camundongos , Células Ganglionares da Retina/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Sirtuína 1/metabolismo , Fármacos Neuroprotetores/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Modelos Animais de Doenças
3.
Invest Ophthalmol Vis Sci ; 64(14): 42, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38015174

RESUMO

Purpose: This study aimed to explore the impact of GSK840 on retinal neuronal injury after retinal ischemia/reperfusion (IR) and its associated mechanism. Methods: We established an in vivo mouse model of IR and an in vitro model of oxygen and glucose deprivation/reoxygenation (OGDR) in primary mouse retinal ganglion cells (RGCs). GSK840, a small-molecule compound, was used to specifically inhibit RIPK3/MLKL-dependent necroptosis. Retinal structure and function evaluation was performed by using hematoxylin and eosin staining, optical coherence tomography, and electroretinography. Propidium Iodide (PI) staining was used for detection of necroptotic cell death, whereas Western blot analysis and immunofluorescence were used to assess necroptosis-related proteins and inner retinal neurons. Results: RIPK3/MLKL-dependent necroptosis was rapidly activated in RGCs following retinal IR or OGDR. GSK840 helped maintain relatively normal inner retinal structure and thickness by preserving inner retinal neurons, particularly RGCs. Meanwhile, GSK840 ameliorated IR-induced visual dysfunction, as evidenced by the improved amplitudes of photopic negative response, a-wave, b-wave, and oscillatory potentials. And GSK840 treatment significantly reduced the population of PI+ RGCs after injury. Mechanistically, GSK840 ameliorated RGC necroptosis by inhibiting the RIPK3/MLKL pathway. Conclusions: GSK840 exerts protective effects against retinal neuronal injury after IR by inhibiting RIPK3/MLKL-mediated RGC necroptosis. GSK840 may represent a protective strategy for RGC degeneration in ischemic retinopathy.


Assuntos
Traumatismos Oculares , Doenças Retinianas , Animais , Camundongos , Necroptose , Doenças Retinianas/etiologia , Doenças Retinianas/prevenção & controle , Células Ganglionares da Retina , Glucose , Isquemia , Oxigênio , Proteínas Quinases
4.
Invest Ophthalmol Vis Sci ; 64(4): 31, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37099021

RESUMO

Purpose: Strategies for neuroprotection are the main targets of glaucoma research. The neuroprotective properties of SRT2104 administration have been proven in central nervous system degeneration diseases through the activation of nicotinamide adenine dinucleotide-dependent deacetylase-silence information regulator 1 (Sirt1). Here, we investigated whether SRT2104 could protect the retina from ischemia/reperfusion (I/R) injury and the underlying mechanisms. Methods: SRT2104 was intravitreally injected immediately after I/R induction. RNA and protein expression were detected by quantitative real-time PCR and Western blot. Protein expression and distribution were examined by immunofluorescence staining. Retinal structure and function were analyzed by hematoxylin and eosin staining, optical coherence tomography, and electroretinogram. Optic nerve axons were quantified using toluidine blue staining. Cellular apoptosis and senescence were evaluated by TUNEL assay and SA-ß-gal staining. Results: The protein expression of Sirt1 decreased dramatically after I/R injury and SRT2104 administration effectively enhanced the stability of Sirt1 protein without significantly influencing Sirt1 mRNA synthesis. SRT2104 administration alone exerted no influence on the structure and function of normal retinas. However, SRT2104 intervention significantly protected the inner retinal structure and neurons; partially restored retinal function after I/R injury. I/R-induced cellular apoptosis and senescence were effectively alleviated by SRT2104 administration. Additionally, SRT2104 intervention markedly reduced neuroinflammation, including reactive gliosis, retinal vascular inflammation, and the overexpression of pro-inflammatory cytokines after I/R injury. Mechanistically, I/R-induced acetylation of p53, NF-κB p65, and STAT3 was significantly reversed by SRT2104 intervention. Conclusions: We demonstrated that SRT2104 exerted potent protective effects against I/R injury by enhancing Sirt1-mediated deacetylation and suppressing apoptosis, senescence, and neuroinflammation-related pathways.


Assuntos
Neuroproteção , Traumatismo por Reperfusão , Camundongos , Animais , Sirtuína 1/metabolismo , Doenças Neuroinflamatórias , Traumatismo por Reperfusão/prevenção & controle , Apoptose , Inflamação , Isquemia
5.
JAMA Ophthalmol ; 140(11): 1076-1083, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36173609

RESUMO

Importance: Mild thyroid-associated ophthalmopathy (TAO) negatively impacts quality of life, yet no clinical guidelines for its treatment are available. Existing evidence supports the use of doxycycline in treating mild TAO. Objective: To evaluate the short-term (12 weeks) efficacy of doxycycline in treating mild TAO. Design, Setting, and Participants: In this placebo-controlled multicenter randomized double-masked trial, 148 patients were assessed for eligibility. After exclusions (patients who were pregnant or lactating, had an allergy to tetracyclines, or had uncontrolled systematic diseases), 100 patients with mild TAO (orbital soft tissue affected mildly) at 5 centers in China were enrolled from July 2013 to December 2019 and monitored for 12 weeks. Interventions: Participants were randomly assigned 1:1 to receive doxycycline (50 mg) or placebo once daily for 12 weeks. Main Outcomes and Measures: The primary outcome was the rate of improvement at 12 weeks compared with baseline assessed by a composite indicator of eyelid aperture (reduction ≥2 mm), proptosis (reduction ≥2 mm), ocular motility (increase ≥8°), and Graves ophthalmopathy-specific quality-of-life (GO-QOL) scale score (increase ≥6 points). Adverse events were recorded. Results: A total of 50 participants were assigned to doxycycline and 50 to placebo. The mean (SD) age was 36.7 (9.1) years; 75 participants (75.0%) were female and 100 (100.0%) were Asian. Medication compliance was checked during participant interviews and by counting excess tablets. At week 12, the improvement rate was 38.0% (19 of 50) in the doxycycline group and 16.0% (8 of 50) in the placebo group (difference, 22.0%; 95% CI, 5.0-39.0; P = .01) in the intention-to-treat population. The per-protocol sensitivity analysis showed similar results (39.6% [19 of 48] vs 16.0% [8 of 50]; difference, 23.6%; 95% CI, 6.4-40.8; P = .009). No adverse events other than 1 case of mild gastric acid regurgitation was recorded in either group. Conclusions and Relevance: The results of this study indicate that oral doxycycline, 50 mg daily, resulted in greater improvement of TAO-related symptoms at 12 weeks compared with placebo in patients with mild TAO. These findings support the consideration of doxycycline for mild TAO but should be tempered by recognizing the relatively short follow-up and the size of the cohort. Trial Registration: ClinicalTrials.gov Identifier: NCT02203682.


Assuntos
Doxiciclina , Oftalmopatia de Graves , Humanos , Feminino , Adulto , Masculino , Doxiciclina/efeitos adversos , Oftalmopatia de Graves/tratamento farmacológico , Qualidade de Vida , Lactação , Antibacterianos/efeitos adversos , Método Duplo-Cego
6.
J Pineal Res ; 73(4): e12828, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36031799

RESUMO

Acute ocular hypertension (AOH) is the most important characteristic of acute glaucoma, which can lead to retinal ganglion cell (RGC) death and permanent vision loss. So far, approved effective therapy is still lacking in acute glaucoma. PANoptosis (pyroptosis, apoptosis, and necroptosis), which consists of three key modes of programmed cell death-apoptosis, necroptosis, and pyroptosis-may contribute to AOH-induced RGC death. Previous studies have demonstrated that melatonin (N-acetyl-5-methoxytryptamine) exerts a neuroprotective effect in many retinal degenerative diseases. However, whether melatonin is anti-PANoptotic and neuroprotective in the progression of acute glaucoma remains unclear. Thus, this study aimed to explore the role of melatonin in AOH retinas and its underlying mechanisms. The results showed that melatonin treatment attenuated the loss of ganglion cell complex thickness, retinal nerve fiber layer thickness, and RGC after AOH injury, and improved the amplitudes of a-wave, b-wave, and oscillatory potentials in the electroretinogram. Additionally, the number of terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells was decreased, and the upregulation of cleaved caspase-8, cleaved caspase-3, Bax, and Bad and downregulation of Bcl-2 and p-Bad were inhibited after melatonin administration. Meanwhile, both the expression and activation of MLKL, RIP1, and RIP3, along with the number of PI-positive cells, were reduced in melatonin-treated mice, and p-RIP3 was in both RGC and microglia/macrophage after AOH injury. Furthermore, melatonin reduced the expression of NLRP3, ASC, cleaved caspase-1, gasdermin D (GSDMD), and cleaved GSDMD, and decreased the number of Iba1/interleukin-1ß-positive cells. In conclusion, melatonin ameliorated retinal structure, prevented retinal dysfunction after AOH, and exerted a neuroprotective effect via inhibition of PANoptosis in AOH retinas.


Assuntos
Glaucoma , Melatonina , Fármacos Neuroprotetores , Hipertensão Ocular , Animais , Camundongos , Apoptose , Proteína X Associada a bcl-2/metabolismo , Caspase 3/metabolismo , Caspase 8/metabolismo , DNA Nucleotidilexotransferase/metabolismo , Interleucina-1beta/metabolismo , Melatonina/farmacologia , Melatonina/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hipertensão Ocular/tratamento farmacológico , Hipertensão Ocular/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
7.
Invest Ophthalmol Vis Sci ; 63(3): 18, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35293951

RESUMO

Purpose: Pituitary adenylate cyclase-activating polypeptide (PACAP) has shown potent neuroprotective effects in central nervous system and retina disorders. However, whether PACAP can attenuate retinal neurodegeneration induced by acute ocular hypertension (AOH) and the underlying mechanisms remain unknown. In this study, we aimed to investigate the effects of PACAP on the survival and function of retinal ganglion cells (RGCs), apoptosis, and inflammation in a mouse model of AOH injury. Methods: PACAP was injected into the vitreous body immediately after inducing AOH injury. Hematoxylin and eosin staining and optical coherence tomography were used to evaluate the loss of retina tissue. Pattern electroretinogram was used to evaluate the function of RGCs. TUNEL assay was used to detect apoptosis. Immunofluorescence and western blot were employed to evaluate protein expression levels. Results: PACAP treatment significantly reduced the losses of whole retina and inner retina thicknesses, Tuj1-positive RGCs, and the amplitudes of pattern electroretinograms induced by AOH injury. Additionally, PACAP treatment remarkably reduced the number of TUNEL-positive cells and inhibited the upregulation of Bim, Bax, and cleaved caspase-3 and downregulation of Bcl-xL after AOH injury. Moreover, PACAP markedly inhibited retinal reactive gliosis and vascular inflammation, as demonstrated by the downregulation of GFAP, Iba1, CD68, and CD45 in PACAP-treated mice. Furthermore, upregulated expression of NF-κB and phosphorylated NF-κB induced by AOH injury was attenuated by PACAP treatment. Conclusions: PACAP could prevent the loss of retinal tissue and improve the survival and function of RGCs. The neuroprotective effect of PACAP is probably associated with its potent anti-apoptotic and anti-inflammatory effects.


Assuntos
Traumatismos Oculares , Glaucoma , Fármacos Neuroprotetores , Hipertensão Ocular , Doenças Retinianas , Animais , Anti-Inflamatórios/uso terapêutico , Traumatismos Oculares/tratamento farmacológico , Glaucoma/tratamento farmacológico , Inflamação/tratamento farmacológico , Injeções Intravítreas , Camundongos , NF-kappa B , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/etiologia , Doenças Retinianas/prevenção & controle
8.
Invest Ophthalmol Vis Sci ; 63(1): 34, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-35077549

RESUMO

Purpose: To explore whether oxidative stress and premature senescence occur in the anterior segment of acute primary angle-closure (APAC) eyes after increased intraocular pressure. Methods: The eye samples of 21 APAC patients, 22 age-related cataract patients, and 10 healthy donors were included. Aqueous humor (AqH), iris, and anterior lens capsule samples were collected. The levels of oxidative stress markers and senescence-associated secretory phenotype (SASP)-related cytokines in AqH were estimated using relevant reagent kits and multiplex bead immunoassay technique. The intensity of relevant markers in anterior segment tissues was examined by immunofluorescence- and senescence-associated ß-galactosidase (SA-ß-gal) staining. Results: Oxidative stress marker levels elevated significantly in the AqH of APAC eyes. Reactive oxygen species (ROS) and 8-hydroxydeoxyguanosine levels were positively correlated with preoperative peak intraocular pressure and age, whereas reduced glutathione/oxidized glutathione (GSH/GSSH) ratio was negatively correlated with both parameters. The levels of several SASP-related cytokines were markedly increased. ROS and malondialdehyde levels were positively correlated with the levels of some SASP-related cytokines, whereas superoxide dismutase level and GSH/GSSH ratio showed an opposite trend. The number of cells positive for oxidative mitochondrial DNA damage and apoptosis-related markers increased in the iris and anterior lens capsule of the APAC group. Senescence-associated markers (p16, p21, and p53) and SA-ß-gal activity were increased in the iris of the APAC group. Conclusions: Oxidative stress and premature senescence occurred in the anterior segment of APAC patients, suggesting that they may be involved in the development of pathological changes in the anterior segment of APAC eyes.


Assuntos
Segmento Anterior do Olho/metabolismo , Senescência Celular/fisiologia , Glaucoma de Ângulo Fechado/metabolismo , Pressão Intraocular/fisiologia , Estresse Oxidativo , Tomografia de Coerência Óptica/métodos , Doença Aguda , Segmento Anterior do Olho/patologia , Feminino , Glaucoma de Ângulo Fechado/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos
9.
Acta Ophthalmol ; 100(4): e899-e911, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34477295

RESUMO

PURPOSE: To investigate the expression of CD146 and its role in proliferative diabetic retinopathy (PDR). METHODS: Enzyme linked immunosorbent assay was performed to analyse the expression and relationship of sCD146, vascular endothelial growth factor (VEGF), sVEGFR1 and sVEGFR2 in vitreous specimens from PDR and idiopathic epiretinal membranes (IERM) or idiopathic macular hole patients. The location of CD146 in ERMs was detected by immunofluorescence. The oxygen-induced retinopathy (OIR) mice model was established and the adeno-associated virus expressing a shRNA of CD146 (AAV1-shCD146-GFP) was administered via intravitreal injection. The effect of AAV1-shCD146-GFP was explored by immunofluorescence, Western blot and quantitative real-time PCR. RESULTS: The levels of sCD146 in vitreous specimens from PDR patients and CD146 in retinas from OIR mice were significantly increased. Immunofluorescence showed that CD146 was co-located with CD31, VEGF, VEGFR1 and VEGFR2, respectively. Intravitreal injection of AAV1-shCD146-GFP could dramatically reduce the formation of neovascularization and non-perfusion area by inhibiting VEGFR2 phosphorylation. CONCLUSION: Our results indicated that CD146 was involved in the development of retinal neovascularization via VEGFR2 pathway. Anti-CD146 may be an innovative or adjuvant therapy, which provides a new direction for the treatment of PDR and other ocular neovascular diseases.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Neovascularização Retiniana , Animais , Antígeno CD146/metabolismo , Diabetes Mellitus/metabolismo , Retinopatia Diabética/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Camundongos , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/prevenção & controle , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Corpo Vítreo/metabolismo
10.
J Pineal Res ; 71(1): e12716, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33426650

RESUMO

Retinopathy of prematurity is a vision-threatening disease associated with retinal hypoxia-ischemia, leading to the death of retinal neurons and chronic neuronal degeneration. During this study, we used the oxygen-induced retinopathy mice model to mimic retinal hypoxia-ischemia phenotypes to investigate further the neuroprotective effect of melatonin on neonatal retinal neurons. Melatonin helped maintain relatively normal inner retinal architecture and thickness and preserve inner retinal neuron populations in avascular areas by rescuing retinal ganglion and bipolar cells, and horizontal and amacrine neurons, from apoptosis. Meanwhile, melatonin recovered visual dysfunction, as reflected by the improved amplitudes and implicit times of a-wave, b-wave, and oscillatory potentials. Additionally, elevated cleaved caspase-3 and Bax protein levels and reduced Bcl-2 protein levels in response to hypoxia-ischemia were diminished after melatonin treatment. Moreover, melatonin increased BDNF and downstream phospho-TrkB/Akt/ERK/CREB levels. ANA-12, a TrkB receptor antagonist, antagonized these melatonin actions and reduced melatonin-induced neuroprotection. Furthermore, melatonin rescued the reduction in melatonin receptor expression. This study suggests that melatonin exerted anti-apoptotic and neuroprotective effects in inner retinal neurons after hypoxia-ischemia, at least partly due to modulation of the BDNF-TrkB pathway.


Assuntos
Melatonina/farmacologia , Fármacos Neuroprotetores/farmacologia , Neurônios Retinianos/efeitos dos fármacos , Neurônios Retinianos/patologia , Retinopatia da Prematuridade , Animais , Animais Recém-Nascidos , Hipóxia/etiologia , Hipóxia/patologia , Isquemia/etiologia , Isquemia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Retinopatia da Prematuridade/complicações , Retinopatia da Prematuridade/patologia
11.
Invest Ophthalmol Vis Sci ; 61(12): 23, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33104163

RESUMO

Purpose: Irreversible retina ganglion cell (RGC) loss is a key process during glaucoma progression. Down syndrome critical region 1 (DSCR1) has been shown to have protective effects against neuronal death. In this study, we aimed to investigate the neuroprotective mechanisms of DSCR1 on RGCs. Methods: DBA/2J mice and optic nerve crush (ONC) rat model were used for vivo assays. Oxidative stress model of primary RGCs was carried out with in vitro transduction. DSCR1 protein localization was assessed by immunofluorescence. Differential protein expression was validated by Western blot, and gene expression was detected by real-time PCR. TUNEL was used to identify cell apoptosis, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was used to analyze cell viability. Results: Significant upregulation of DSCR1 was observed in DBA/2J mice, ONC rat model, and RGCs treated with H2O2, reaching peaks at the age of 6 months in DBA/2J mice, 5 days after ONC in rats, and 24 hours after H2O2 treatment in RGCs, respectively. DSCR1 was shown to be expressed in the ganglion cell layer. In vitro, overexpressed DSCR1 significantly promoted phosphorylation of cyclic AMP response element binding protein (CREB), B-cell lymphoma 2 (Bcl-2) expression, and RGC survival rate while reducing cleaved caspase 3 expression in H2O2-treated RGCs. On the other hand, the opposite effects were shown after knockdown of DSCR1. In addition, silencing of CREB inhibited expression of DSCR1. Conclusions: Our results suggested that DSCR1 might protect the RGCs against oxidative stress via the CREB-Bcl-2 pathway, which may provide a theoretical basis for future treatments of glaucoma.


Assuntos
Apoptose , Proteínas de Ligação ao Cálcio/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas Musculares/genética , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células Ganglionares da Retina/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Técnica Indireta de Fluorescência para Anticorpo , Peróxido de Hidrogênio/toxicidade , Marcação In Situ das Extremidades Cortadas , Lentivirus/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Compressão Nervosa , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Retina/metabolismo , Retina/patologia , Células Ganglionares da Retina/patologia , Transfecção
12.
J Pineal Res ; 69(1): e12660, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32323368

RESUMO

Choroidal neovascularization (CNV) is an important characteristic of advanced wet age-related macular degeneration (AMD) and leads to severe visual impairment among elderly patients. Previous studies have demonstrated that melatonin induces several biological effects related to antioxidation, anti-inflammation, and anti-angiogenesis. However, the role of melatonin in CNV, and its underlying mechanisms, has not been investigated thus far. In this study, we found that melatonin administration significantly reduced the scale and volume of CNV lesions, suppressed vascular leakage, and inhibited the capacity of vascular proliferation in the laser-induced mouse CNV model. Additionally, the results also show that the melatonin-treated retinal microglia in the laser-induced mice exhibited enhanced expression of M1-type markers, such as iNOS, CCL-3, CCL-5, and TNF-α, as well as decreased production of M2-type markers, such as Arg-1, Fizz-1, IL-10, YM-1, and CD206, indicating that melatonin switched the macrophage/microglia polarization from pro-angiogenic M2 phenotype to anti-angiogenic M1 phenotype. Furthermore, the RhoA/ROCK signaling pathway was activated during CNV formation, yet was suppressed after an intraperitoneal injection of melatonin. In conclusion, melatonin attenuated CNV, reduced vascular leakage, and inhibited vascular proliferation by switching the macrophage/microglia polarization from M2 phenotype to M1 phenotype via inhibition of RhoA/ROCK signaling pathway in CNV. This suggests that melatonin could be a novel agent for the treatment of AMD.


Assuntos
Neovascularização de Coroide/metabolismo , Macrófagos/metabolismo , Melatonina/metabolismo , Microglia/metabolismo , Transdução de Sinais , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Neovascularização de Coroide/patologia , Macrófagos/patologia , Camundongos , Microglia/patologia
13.
J Mol Neurosci ; 68(3): 475-484, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30993644

RESUMO

Retinal ganglion cell (RGC) apoptosis is considered an important pathological hallmark of glaucoma. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic peptide with potent neuroprotective properties. In our previous study, we found that the expression of PACAP and its high-affinity receptor PACAP receptor type 1 (PAC1R) increased markedly after optic nerve crush (ONC), and occurred mainly in the ganglion cell layer of the retina. This suggests that the upregulation of PACAP may play a vital role in inhibiting RGC death after ONC. Therefore, in the present study, we investigate the specific effects and underlying mechanism of PACAP in RGC death after ONC. Vehicle (physiological saline) or PACAP (1 nM to 200 nM) solution was injected into the vitreous body. Seven days later, the retinas were harvested, and the surviving RGCs were retrogradely labeled with Fluoro-Gold (FG; Fluorochrome) at different concentrations of PACAP. Immunofluorescence double staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay were used to observe the effects of PACAP on RGC apoptosis. Our results showed that PACAP treatment inhibited caspase-3-mediated RGC apoptosis, promoted the phosphorylation of cAMP response element binding protein (CREB), up-regulated the expression of B-cell lymphoma 2 (Bcl-2), and ultimately improved RGC survival. These results suggest that PACAP may prevent RGC apoptosis after ONC via activation of CREB-mediated Bcl-2 transcription. The study thus contributes to a basic understanding of the mechanism by which PACAP decreased RGC apoptosis and provides a theoretical basis for future clinical application of PACAP in the treatment of glaucoma.


Assuntos
Apoptose , Fármacos Neuroprotetores/farmacologia , Atrofia Óptica/tratamento farmacológico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Células Ganglionares da Retina/efeitos dos fármacos , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Masculino , Compressão Nervosa , Fármacos Neuroprotetores/uso terapêutico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Transdução de Sinais
14.
J Mol Neurosci ; 68(3): 465-474, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30415445

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) has been demonstrated to play a crucial part in protecting retinal ganglion cells (RGCs) from apoptosis in various retinal injury animal models. PACAP has two basic groups of receptors: PACAP receptor type 1 (PAC1R) and vasoactive intestinal polypeptide/PACAP receptors (VPAC1R and VPAC2R). However, few studies illustrated the spatial and temporal expression changes of endogenous PACAP and its receptors in a rodent optic nerve crush (ONC) model. In this study, a significant upregulation of PACAP and PAC1R in the retina after ONC was observed in both protein and RNA levels. The peak level of PACAP and PAC1R expression could be found on the fifth day following ONC. In addition, immunofluorescent labeling indicated that PACAP and PAC1R were localized mainly in RGCs. On the contrary, VPAC1R and VPAC2R were hardly detected in the retina. Collectively, the spatiotemporal expression of PACAP and its high-affinity receptor PAC1R were remarkably changed after ONC, and mainly expressed in the ganglion cell layer of the retina. This suggested that the upregulation of PACAP and PAC1R may play a vital role in RGC death after ONC.


Assuntos
Atrofia Óptica/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Células Ganglionares da Retina/metabolismo , Animais , Masculino , Compressão Nervosa , Atrofia Óptica/patologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Ratos , Ratos Sprague-Dawley , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Células Ganglionares da Retina/patologia
15.
Histopathology ; 71(4): 543-552, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28485101

RESUMO

AIMS: Two-thirds of early pregnancy failures present with reduced trophoblast invasion, and SLIT2/ROBO1 signalling is considered to play an important role in trophoblast function during pregnancy. We investigated SLIT2/ROBO1 signalling associated with missed and threatened miscarriage during early gestation. METHODS AND RESULTS: Human placenta samples were collected from women with missed miscarriage (n = 25), threatened miscarriage (n = 22) and termination of pregnancy controls (n = 32). Corresponding decreases in beta human chorionic gonadotrophin (ß-hCG) levels and shallow trophoblast invasion were observed in patients with missed and threatened miscarriage, immunohistological staining revealed abnormal Slit2 and Robo1, as well as E-cadherin and activating protein-2 alpha (AP-2α) expression in villi and extravillous trophoblasts, and the expression of these proteins were confirmed in villi and decidua of miscarriage material by Western blotting. Using HTR8/SVneo cells, blocking SLIT2/ROBO1 signalling promoted cell migration, proliferation and suppressed differentiation. Moreover, blocking SLIT2/ROBO1 signalling in HTR8/SVneo cells altered trophoblast differentiation-related and angiogenesis-related gene mRNA expression, which also occurred in the tissues of missed and threatened miscarriage. CONCLUSIONS: SLIT2/ROBO1 signalling may regulate trophoblast differentiation and invasion causing restricting ß-hCG production, shallow trophoblast invasion and inhibiting placental angiogenesis in missed and threatened miscarriage during the first trimester.


Assuntos
Aborto Espontâneo/etiologia , Ameaça de Aborto/etiologia , Caderinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Aborto Espontâneo/metabolismo , Aborto Espontâneo/patologia , Ameaça de Aborto/metabolismo , Ameaça de Aborto/patologia , Adulto , Antígenos CD , Caderinas/genética , Movimento Celular , Gonadotropina Coriônica Humana Subunidade beta/metabolismo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas do Tecido Nervoso/genética , Placenta/metabolismo , Placenta/patologia , Placentação , Gravidez , Primeiro Trimestre da Gravidez , Receptores Imunológicos/genética , Trofoblastos/metabolismo , Trofoblastos/patologia , Adulto Jovem , Proteínas Roundabout
16.
Cell Cycle ; 15(13): 1742-54, 2016 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-27163719

RESUMO

People have known that autophagy plays a very important role in many physiological and pathological events. But the role of autophagy on embryonic angiogenesis still remains obscure. In this study, we demonstrated that Atg7, Atg8 and Beclin1 were expressed in the plexus vessels of angiogenesis at chick yolk sac membrane and chorioallantoic membrane. Interfering in autophagy with autophagy inducer or inhibitor could restrict the angiogenesis in vivo, which might be driven by the disorder of angiogenesis-related gene expressions, and also lead to embryonic hemorrhage, which was due to imperfection cell junctions in endothelial cells including abnormal expressions of tight junction, adheren junction and desmosome genes. Using HUVECs, we revealed that cell viability and migration ability changed with the alteration of cell autophagy exposed to RAPA or 3-MA. Interestingly, tube formation assay showed that HUVECs ability of tube formation altered with the change of Atg5, Atg7 and Atg8 manipulated by the transfection of their corresponding siRNA or plasmids. Moreover, the lost cell polarity labeled by F-actin and the absenced ß-catenin in RAPA-treated and 3-MA-treated cell membrane implied intracellular cytoskeleton alteration was induced by the activation and depression of autophagy. Taken together, our current experimental data reveal that autophagy is really involved in regulating angiogenesis during embryo development.


Assuntos
Autofagia , Desenvolvimento Embrionário , Neovascularização Fisiológica , Adenina/análogos & derivados , Adenina/farmacologia , Angiodisplasia/genética , Angiodisplasia/patologia , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Movimento Celular/efeitos dos fármacos , Embrião de Galinha , Membrana Corioalantoide/efeitos dos fármacos , Membrana Corioalantoide/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Endotélio Vascular/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Sirolimo/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA