Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 148: 387-398, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095174

RESUMO

Land use and precipitation are two major factors affecting phosphorus (P) pollution of watershed runoff. However, molecular characterization of dissolved organic phosphorus (DOP) in runoff under the joint influences of land use and precipitation remains limited. This study used Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to study the molecular characteristics of DOP in a typical P-polluted watershed with spatially variable land use and precipitation. The results showed that low precipitation and intense human activity, including phosphate mining and associated industries, resulted in the accumulation of aliphatic DOP compounds in the upper reaches, characterized by low aromaticity and low biological stability. Higher precipitation and widespread agriculture in the middle and lower reaches resulted in highly unsaturated DOP compounds with high biological stability constituting a higher proportion, compared to in the upper reaches. While, under similar precipitation, more aliphatic DOP compounds characterized by lower aromaticity and higher saturation were enriched in the lower reaches due to more influence from urban runoff relative to the middle reaches. Photochemical and/or microbial processes did result in changes in the characteristics of DOP compounds during runoff processes due to the prevalence of low molecular weight and low O/C bioavailable aliphatic DOP molecules in the upper reaches, which were increasingly transformed into refractory compounds from the upper to middle reaches. The results of this study can increase the understanding of the joint impacts of land use and precipitation on DOP compounds in watershed runoff.


Assuntos
Monitoramento Ambiental , Fósforo , Poluentes Químicos da Água , Fósforo/análise , Poluentes Químicos da Água/análise , Chuva/química , Agricultura
2.
Sci Total Environ ; 951: 175647, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39168335

RESUMO

Anthropogenic and hydrological drivers are key factors influencing the fate of dissolved organic matter (DOM) and dissolved organic phosphorus (DOP) in river runoff. However, how anthropogenic disturbances and hydrological conditions jointly affect the composition and characteristics of DOM and DOP in river runoff remains unclear. This study used fluorescence spectroscopy, Fourier transform ion cyclotron resonance mass spectrometry, and the stable water isotopes to interpret the chemical composition and properties of DOM and DOP as well as their linkages to anthropogenic disturbances and hydrological conditions in a typical P-contaminated tributary to the central Yangtze River. The results show in the wet season, the average abundance of humic-like components in DOM exceeded 60 %, while the average abundance of tryptophan-like components in DOM exceeded 50 % in the dry season. During the dry season, hydrological conditions had a greater impact on highly unsaturated DOM compounds compared to anthropogenic disturbances because a decrease in precipitation reduced the transport of terrestrial DOM into aquatic systems and increased water retention time in the river, promoting the production of unsaturated compounds from photochemistry. The effects of the two factors were similar in the wet season because active agricultural activities and intense precipitation jointly facilitated the entry of exogenous humics into the runoff, leading to the similar relative abundance of highly unsaturated DOM compounds associated with both factors. Anthropogenic disturbances had a greater impact on aliphatic DOM and DOP than hydrological conditions, which was associated with intense human activities in the watershed, such as phosphate mining, agricultural cultivation, and domestic sewage discharge. This study provides new knowledge about the composition, properties and underlying mechanisms of DOM and DOP in the P-contaminated watershed runoff.

3.
Chemosphere ; 341: 140037, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37659512

RESUMO

The source and composition characteristics of dissolved organic matter (DOM) are crucial to identify and evaluate the sources of pollution in the watershed. The construction of reservoirs changes the hydrological condition and pollutant fate of the river. However, the effects of reservoirs' construction on DOM in the watershed and the underlying mechanisms are still unclear. This study aims to examine and compare the characteristics of DOM in reservoirs and streams in the Huangbai River, a typical reservoir-affected and P-contaminated river within the Yangtze River catchment. The results showed that DOM in reservoirs was characterized by more contribution from autochthonous source, under the influence of reservoirs' construction; while, DOM in rivers was mainly originated from terrestrial input. Reservoirs had more lipid-like and protein-like compounds, while rivers contained more oxy-aromatic-like compounds. The percentage of CHOP molecules in reservoirs was significantly higher than that in rivers. The underlying mechanism is that more suitable conditions were created for plankton to grow after constructing reservoirs, which converted inorganic orthophosphate into organic phosphorus, and over time, organic phosphorus was gradually enriched in reservoirs, which exacerbated the risk of eutrophication in the reservoir water body. This study can provide theoretical support for monitoring and evaluation of water quality in reservoir-affected rivers.


Assuntos
Matéria Orgânica Dissolvida , Poluentes Ambientais , Rios , Fósforo , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA