Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Gut Microbes ; 15(1): 2174407, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36740862

RESUMO

Prevention of rotavirus (RV) infection by gut-resident segmented filamentous bacteria (SFB) is an example of the influence of gut microbiota composition on enteric viral infection. Yet, the mechanism by which SFB prevents RV infection is poorly understood. A recent report that SFB colonization of germfree mice generates retinoic acid (RA) thus activating RA receptor (RAR) signaling, which protected against Citrobacter rodentium infection, prompted us to investigate whether this pathway might contribute to SFB's protection against RV infection. Colonization of conventional mice by SFB indeed increased intestinal RA levels and direct administration of RA partially mimicked the protection against RV infection conferred by SFB. Moreover, blockade of RAR signaling eliminated SFB's protection against RV infection. Blockade of RAR signaling did not impact RV infection in the absence of SFB, nor did it alter the protection against RV infection conferred by bacterial flagellin, which in contrast to SFB, is dependent upon IL-22 signaling. SFB/RA-mediated prevention of RV infection was associated with an RA-dependent increase in enterocyte migration, consistent with the notion that enhanced anoikis is the ultimate means by which SFB, IL-22, and RA impede RV infection.


Assuntos
Microbioma Gastrointestinal , Infecções por Rotavirus , Camundongos , Animais , Infecções por Rotavirus/prevenção & controle , Intestino Delgado , Bactérias , Flagelina
2.
Cell Mol Gastroenterol Hepatol ; 12(3): 983-1000, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33940221

RESUMO

BACKGROUND & AIMS: Nourishment of gut microbiota via consumption of fermentable fiber promotes gut health and guards against metabolic syndrome. In contrast, how dietary fiber impacts type 1 diabetes is less clear. METHODS: To examine impact of dietary fibers on development of type 1 diabetes in the streptozotocin (STZ)-induced and spontaneous non-obese diabetes (NOD) models, mice were fed grain-based chow (GBC) or compositionally defined diets enriched with a fermentable fiber (inulin) or an insoluble fiber (cellulose). Spontaneous (NOD mice) or STZ-induced (wild-type mice) diabetes was monitored. RESULTS: Relative to GBC, low-fiber diets exacerbated STZ-induced diabetes, whereas diets enriched with inulin, but not cellulose, strongly protected against or treated it. Inulin's restoration of glycemic control prevented loss of adipose depots, while reducing food and water consumption. Inulin normalized pancreatic function and markedly enhanced insulin sensitivity. Such amelioration of diabetes was associated with alterations in gut microbiota composition and was eliminated by antibiotic administration. Pharmacologic blockade of fermentation reduced inulin's beneficial impact on glycemic control, indicating a role for short-chain fatty acids (SCFA). Furthermore, inulin's microbiota-dependent anti-diabetic effect associated with SCFA-independent restoration of interleukin 22, which was necessary and sufficient to ameliorate STZ-induced diabetes. Inulin-enriched diets significantly delayed diabetes in NOD mice. CONCLUSIONS: Fermentable fiber confers microbiota-dependent increases in SCFA and interleukin 22 that, together, may have potential to prevent and/or treat type 1 diabetes.


Assuntos
Bactérias/classificação , Diabetes Mellitus Tipo 1/tratamento farmacológico , Fibras na Dieta/administração & dosagem , Ácidos Graxos Voláteis/metabolismo , Interleucinas/metabolismo , Inulina/administração & dosagem , Animais , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/microbiologia , Fibras na Dieta/farmacologia , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Hemoglobinas Glicadas/metabolismo , Inulina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Tamanho do Órgão/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Pâncreas/fisiopatologia , Estreptozocina/efeitos adversos , Resultado do Tratamento , Interleucina 22
3.
J Infect Dis ; 223(8): 1478-1487, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32830227

RESUMO

BACKGROUND: Bacterial flagellin is a major target of innate and adaptive immunity, both of which can promote and/or compensate for deficiencies in each other's function. METHODS: To investigate the role of innate immune detection of flagellin irrespective of adaptive immunity, we examined the consequences of loss of Toll-like receptor 5 (T5) and/or Nod-like receptor 4 (N4) upon a Rag1-deficient background. RESULTS: Mice lacking Toll-like receptor 5 and Rag1 (T5/Rag-DKO) exhibited frequent lethal Pasteurellaceae-containing abscesses that prevented breeding of these mice. Mice lacking Toll-like receptor 5, Nod-like receptor 4, and Rag1 (T5/N4/Rag-TKO) also resulted in sporadic lethal abdominal abscesses caused by similar Pasteurellaceae. In the absence of such infections, relative to Rag1-KO, T5/N4/Rag-TKO mice exhibited microbiota encroachment, low-grade inflammation, microbiota dysbiosis, and, moreover were highly prone to Citrobacter infection and developed severe colitis when adoptively transferred with colitogenic T cells. Relative proneness of T5/N4/Rag-TKO mice to T-cell colitis was ablated by antibiotics while fecal microbiota transplant from T5/N4/Rag-TKO mice to wild-type mice transferred proneness to Citrobacter infection, indicating that dysbiosis in T5/N4/Rag-TKO mice contributed to these phenotypes. CONCLUSIONS: These results demonstrate a critical role for innate immune detection of flagellin, especially in the intestinal tract and particularly in hosts deficient in adaptive immunity.


Assuntos
Colite , Flagelina/imunologia , Proteínas de Homeodomínio , Imunidade Inata , Proteínas NLR , Receptor 5 Toll-Like , Imunidade Adaptativa , Animais , Disbiose , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas NLR/genética , Receptor 5 Toll-Like/genética
4.
Sci Immunol ; 5(52)2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33008915

RESUMO

Bacterial flagellin can elicit production of TLR5-mediated IL-22 and NLRC4-mediated IL-18 cytokines that act in concert to cure and prevent rotavirus (RV) infection. This study investigated the mechanism by which these cytokines act to impede RV. Although IL-18 and IL-22 induce each other's expression, we found that IL-18 and IL-22 both impeded RV independently of one another and did so by distinct mechanisms that involved activation of their cognate receptors in intestinal epithelial cells (IEC). IL-22 drove IEC proliferation and migration toward villus tips, which resulted in increased extrusion of highly differentiated IEC that serve as the site of RV replication. In contrast, IL-18 induced cell death of RV-infected IEC thus directly interrupting the RV replication cycle, resulting in spewing of incompetent virus into the intestinal lumen and causing a rapid drop in the number of RV-infected IEC. Together, these actions resulted in rapid and complete expulsion of RV, even in hosts with severely compromised immune systems. These results suggest that a cocktail of IL-18 and IL-22 might be a means of treating viral infections that preferentially target short-lived epithelial cells.


Assuntos
Anoikis/imunologia , Interleucina-18/metabolismo , Interleucinas/metabolismo , Mucosa Intestinal/patologia , Infecções por Rotavirus/imunologia , Animais , Movimento Celular/imunologia , Proliferação de Células , Modelos Animais de Doenças , Células Epiteliais/imunologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Feminino , Humanos , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-18/uso terapêutico , Interleucinas/genética , Interleucinas/imunologia , Interleucinas/uso terapêutico , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/virologia , Masculino , Camundongos , Camundongos Knockout , Rotavirus/imunologia , Infecções por Rotavirus/tratamento farmacológico , Infecções por Rotavirus/virologia , Transdução de Sinais/imunologia , Interleucina 22
5.
Microbiol Resour Announc ; 9(10)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139567

RESUMO

Segmented filamentous bacteria (SFB) are well appreciated for eliciting Th17 cell immune responses. Here, we report the genome sequence of a murine isolate of SFB, which confers strong protection against rotavirus infection independent of acquired immunity.

6.
Cell ; 179(3): 644-658.e13, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31607511

RESUMO

Rotavirus (RV) encounters intestinal epithelial cells amidst diverse microbiota, opening possibilities of microbes influencing RV infection. Although RV clearance typically requires adaptive immunity, we unintentionally generated RV-resistant immunodeficient mice, which, we hypothesized, reflected select microbes protecting against RV. Accordingly, such RV resistance was transferred by co-housing and fecal transplant. RV-protecting microbiota were interrogated by heat, filtration, and antimicrobial agents, followed by limiting dilution transplant to germ-free mice and microbiome analysis. This approach revealed that segmented filamentous bacteria (SFB) were sufficient to protect mice against RV infection and associated diarrhea. Such protection was independent of previously defined RV-impeding factors, including interferon, IL-17, and IL-22. Colonization of the ileum by SFB induced changes in host gene expression and accelerated epithelial cell turnover. Incubation of RV with SFB-containing feces reduced infectivity in vitro, suggesting direct neutralization of RV. Thus, independent of immune cells, SFB confer protection against certain enteric viral infections and associated diarrheal disease.


Assuntos
Imunidade Adaptativa/genética , Diarreia/microbiologia , Mucosa Intestinal/microbiologia , Infecções por Rotavirus/microbiologia , Animais , Anti-Infecciosos/farmacologia , Bactérias/genética , Bactérias/metabolismo , Diarreia/prevenção & controle , Diarreia/virologia , Fezes/microbiologia , Regulação da Expressão Gênica/genética , Humanos , Íleo/microbiologia , Íleo/patologia , Íleo/virologia , Interferons/genética , Interleucina-17/genética , Interleucinas/genética , Mucosa Intestinal/patologia , Mucosa Intestinal/virologia , Camundongos , Microbiota/genética , Rotavirus/patogenicidade , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/virologia , Interleucina 22
7.
Viruses ; 10(3)2018 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-29534424

RESUMO

Most viruses first encounter host cells at mucosal surfaces, which are typically colonized by a complex ecosystem of microbes collectively referred to as the microbiota. Recent studies demonstrate the microbiota plays an important role in mediating host-viral interactions and determining the outcomes of these encounters. This review outlines recently described examples of how bacteria and viruses impact each other particularly during infectious processes. Mechanistically, these effects can be broadly categorized as reflecting direct bacterial-viral interactions and/or involving microbial impacts upon innate and/or adaptive immunity.


Assuntos
Infecções Bacterianas/imunologia , Fenômenos Fisiológicos Bacterianos , Interações Hospedeiro-Patógeno/imunologia , Interações Microbianas/imunologia , Viroses/imunologia , Fenômenos Fisiológicos Virais , Animais , Antibiose , Microbioma Gastrointestinal , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo
8.
Science ; 346(6211): 861-5, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25395539

RESUMO

Activators of innate immunity may have the potential to combat a broad range of infectious agents. We report that treatment with bacterial flagellin prevented rotavirus (RV) infection in mice and cured chronically RV-infected mice. Protection was independent of adaptive immunity and interferon (IFN, type I and II) and required flagellin receptors Toll-like receptor 5 (TLR5) and NOD-like receptor C4 (NLRC4). Flagellin-induced activation of TLR5 on dendritic cells elicited production of the cytokine interleukin-22 (IL-22), which induced a protective gene expression program in intestinal epithelial cells. Flagellin also induced NLRC4-dependent production of IL-18 and immediate elimination of RV-infected cells. Administration of IL-22 and IL-18 to mice fully recapitulated the capacity of flagellin to prevent or eliminate RV infection and thus holds promise as a broad-spectrum antiviral agent.


Assuntos
Flagelina/administração & dosagem , Imunidade Inata , Interleucina-18/imunologia , Interleucinas/imunologia , Infecções por Rotavirus/prevenção & controle , Receptor 5 Toll-Like/fisiologia , Animais , Diarreia/imunologia , Diarreia/terapia , Diarreia/virologia , Modelos Animais de Doenças , Fezes/virologia , Flagelina/imunologia , Proteínas de Homeodomínio/genética , Interleucina-18/administração & dosagem , Interleucina-18/genética , Interleucinas/administração & dosagem , Interleucinas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/terapia , Receptor 5 Toll-Like/genética , Eliminação de Partículas Virais , Interleucina 22
9.
J Physiol ; 590(21): 5335-48, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22907060

RESUMO

The Kir4.1 channel is expressed in the brainstem, retina and kidney where it acts on K(+) transportation and pH-dependent membrane potential regulation. Its heteromerization with Kir5.1 leads to K(+) currents with distinct properties such as single-channel conductance, rectification, pH sensitivity and phosphorylation modulation. Here we show that Kir5.1 also enables S-glutathionylation to the heteromeric channel. Expressed in HEK cells, an exposure to the oxidant H(2)O(2) or diamide produced concentration-dependent inhibitions of the whole-cell Kir4.1-Kir5.1 currents. In inside-out patches, currents were inhibited strongly by a combination of diamide/GSH or H(2)O(2)/GSH but not by either alone. The currents were also suppressed by GSSG and the thiol oxidants pyridine disulfides (PDSs), suggesting S-glutathionylation. In contrast, none of the exposures had significant effects on the homomeric Kir4.1 channel. Cys158 in the TM2 helix of Kir5.1 was critical for the S-glutathionylation, which was accessible to intracellular but not extracellular oxidants. Site-directed mutagenesis of this residue (C158A or C158T) abolished the Kir4.1-Kir5.1 current modulation by oxidants, and eliminated almost completely the biochemical interaction of Kir5.1 with GSH. In tandem Kir4.1-Kir5.1 constructs, the channel with a single Cys158 was inhibited to the same degree as the wild-type channel, suggesting that one glutathione moiety is sufficient to block the channel. Consistent with the location of Cys158, GSSG inhibited the channel only when the channel was open, indicating that the channel inhibition was state dependent. The finding that the heteromeric Kir4.1-Kir5.1 channel but not the homomeric Kir4.1 is subject to the S-glutathionylation thus suggests a novel Kir4.1-Kir5.1 channel modulation mechanism that is likely to occur in oxidative stress.


Assuntos
Glutationa/fisiologia , Estresse Oxidativo/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Células HEK293 , Humanos , Oxidantes/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/química , Conformação Proteica , Compostos de Sulfidrila/farmacologia
10.
Br J Pharmacol ; 167(1): 26-36, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22394376

RESUMO

BACKGROUND AND PURPOSE: Rosiglitazone is an anti-diabetic drug acting as an insulin sensitizer. We recently found that rosiglitazone also inhibits the vascular isoform of ATP-sensitive K(+) channels and compromises vasodilatory effects of ß-adrenoceptor activation and pinacidil. As its potency for the channel inhibition is in the micromolar range, rosiglitazone may be used as an effective K(ATP) channel inhibitor for research and therapeutic purposes. Therefore, we performed experiments to determine whether other isoforms of K(ATP) channels are also sensitive to rosiglitazone and what their sensitivities are. EXPERIMENTAL APPROACH: K(IR) 6.1/SUR2B, K(IR) 6.2/SUR1, K(IR) 6.2/SUR2A, K(IR) 6.2/SUR2B and K(IR) 6.2ΔC36 channels were expressed in HEK293 cells and were studied using patch-clamp techniques. KEY RESULTS: Rosiglitazone inhibited all isoforms of K(ATP) channels in excised patches and in the whole-cell configuration. Its IC(50) was 10 µmol·L(-1) for the K(IR) 6.1/SUR2B channel and ∼45 µmol·L(-1) for K(IR) 6.2/SURx channels. Rosiglitazone also inhibited K(IR) 6.2ΔC36 channels in the absence of the sulphonylurea receptor (SUR) subunit, with potency (IC(50) = 45 µmol·L(-1) ) almost identical to that for K(IR) 6.2/SURx channels. Single-channel kinetic analysis showed that the channel inhibition was mediated by augmentation of the long-lasting closures without affecting the channel open state and unitary conductance. In contrast, rosiglitazone had no effect on K(IR) 1.1, K(IR) 2.1 and K(IR) 4.1 channels, suggesting that the channel inhibitory effect is selective for K(IR) 6.x channels. CONCLUSIONS AND IMPLICATIONS: These results suggest a novel K(ATP) channel inhibitor that acts on the pore-forming K(IR) 6.x subunit, affecting the channel gating.


Assuntos
Canais KATP/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Subunidades Proteicas/antagonistas & inibidores , Tiazolidinedionas/farmacologia , Vasodilatadores/farmacologia , Células HEK293 , Humanos , Canais KATP/fisiologia , Subunidades Proteicas/fisiologia , Rosiglitazona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA