Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 15(3): 5545-5559, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33625824

RESUMO

Effective inhibition of the protein derived from cellular myelocytomatosis oncogene (c-Myc) is one of the most sought-after goals in cancer therapy. While several c-Myc inhibitors have demonstrated therapeutic potential, inhibiting c-Myc has proven challenging, since c-Myc is essential for normal tissues and tumors may present heterogeneous c-Myc levels demanding contrasting therapeutic strategies. Herein, we developed tumor-targeted nanomedicines capable of treating both tumors with high and low c-Myc levels by adjusting their ability to spatiotemporally control drug action. These nanomedicines loaded homologues of the bromodomain and extraterminal (BET) motif inhibitor JQ1 as epigenetic c-Myc inhibitors through pH-cleavable bonds engineered for fast or slow drug release at intratumoral pH. In tumors with high c-Myc expression, the fast-releasing (FR) nanomedicines suppressed tumor growth more effectively than the slow-releasing (SR) ones, whereas, in the low c-Myc tumors, the efficacy of the nanomedicines was the opposite. By studying the tumor distribution and intratumoral activation of the nanomedicines, we found that, despite SR nanomedicines achieved higher accumulation than the FR counterparts in both c-Myc high and low tumors, the antitumor activity profiles corresponded with the availability of activated drugs inside the tumors. These results indicate the potential of engineered nanomedicines for c-Myc inhibition and spur the idea of precision pH-sensitive nanomedicine based on cancer biomarker levels.


Assuntos
Antineoplásicos , Azepinas , Antineoplásicos/farmacologia , Azepinas/farmacologia , Linhagem Celular Tumoral , Concentração de Íons de Hidrogênio , Nanomedicina , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/farmacologia , Transdução de Sinais , Triazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
ACS Nano ; 14(8): 10127-10140, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32806051

RESUMO

Glioblastoma (GBM) is resistant to immune checkpoint inhibition due to its low mutation rate, phosphatase and tensin homologue (PTEN)-deficient immunosuppressive microenvironment, and high fraction of cancer stem-like cells (CSCs). Nanomedicines fostering immunoactivating intratumoral signals could reverse GBM resistance to immune checkpoint inhibitors (ICIs) for promoting curative responses. Here, we applied pH-sensitive epirubicin-loaded micellar nanomedicines, which are under clinical evaluation, to synergize the efficacy of anti-PD1antibodies (aPD1) against PTEN-positive and PTEN-negative orthotopic GBM, the latter with a large subpopulation of CSCs. The combination of epirubicin-loaded micelles (Epi/m) with aPD1 overcame GBM resistance to ICIs by transforming cold GBM into hot tumors with high infiltration of antitumor immune cells through the induction of immunogenic cell death (ICD), elimination of immunosuppressive myeloid-derived suppressor cells (MSDCs), and reduction of PD-L1 expression on tumor cells. Thus, Epi/m plus aPD1 eradicated both PTEN-positive and PTEN-negative orthotopic GBM and provided long-term immune memory effects. Our results indicate the high translatable potential of Epi/m plus aPD1 for the treatment of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Epirubicina , Glioblastoma/tratamento farmacológico , Humanos , Micelas , Nanomedicina , Células-Tronco Neoplásicas , PTEN Fosfo-Hidrolase , Microambiente Tumoral
3.
J Control Release ; 321: 132-144, 2020 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-32032656

RESUMO

Tumor resistance to tyrosine kinase inhibitors (TKIs) is an inexorable clinical event. The manipulation of adaptive changes in cancer cells while inhibiting the signaling pathways could be an effective strategy for overcoming TKI resistance toward reducing tumor relapse and prolonging survival. Here, we tested this approach by using polymeric nanomedicines delivering the pan-kinase inhibitor staurosporine (STS) to treat renal cell carcinoma (RCC) resistant to the multi-targeted TKI sunitinib. STS blocked the activity of TKI-resistant protein kinases and strongly inhibited adaptive dynamics in RCC cells promoted by MDR1 and GLUT1 to overcome sunitinib resistance. Co-delivery of STS and epirubicin directed to eliminate fast-proliferating cancer cells through the same nanomedicine platform enabled safe and potent in vivo efficacy in mouse models of RCC, overcoming sunitinib resistance and suppressing the development of metastasis. These results indicate our approach as a promising strategy for effectively managing TKI resistance.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Camundongos , Nanomedicina , Inibidores de Proteínas Quinases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA